<table>
<thead>
<tr>
<th>Spis treści</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Czynniki zagrożeń w środowisku pracy</td>
<td>4</td>
</tr>
<tr>
<td>Niebezpieczne i szkodliwe czynniki fizyczne występujące w środowisku pracy (podział)</td>
<td>4</td>
</tr>
<tr>
<td>Czynniki materialnego środowiska pracy:</td>
<td>4</td>
</tr>
<tr>
<td>Czynniki urazowe:</td>
<td>4</td>
</tr>
<tr>
<td>Czynniki związane ze zjawiskiem elektryczności:</td>
<td>4</td>
</tr>
<tr>
<td>Niebezpieczne i szkodliwe czynniki chemiczne występujące w środowisku pracy</td>
<td>5</td>
</tr>
<tr>
<td>Ze względu na możliwe oddziaływanie na organizm człowieka wyróżniamy następujące substancje:</td>
<td>5</td>
</tr>
<tr>
<td>Ze względu na drogi przenikania do organizmu człowieka wyróżniamy substancje przenikające przez:</td>
<td>5</td>
</tr>
<tr>
<td>Niebezpieczne i szkodliwe czynniki biologiczne występujące w środowisku pracy</td>
<td>5</td>
</tr>
<tr>
<td>Niebezpieczne i szkodliwe czynniki psychofizyczne występujące w środowisku pracy</td>
<td>5</td>
</tr>
<tr>
<td>Inne czynniki</td>
<td>5</td>
</tr>
<tr>
<td>Hałas</td>
<td>6</td>
</tr>
<tr>
<td>Wpływ hałasu na organizm człowieka i jego skutki</td>
<td>9</td>
</tr>
<tr>
<td>Pomiar i ocena wielkości charakteryzujących hałas w środowisku - ocena ryzyka zawodowego związanego z narażeniem na hałas</td>
<td>11</td>
</tr>
<tr>
<td>Stan narażenia i źródła hałasu w środowisku pracy</td>
<td>13</td>
</tr>
<tr>
<td>Metody i środki ochrony przed hałasem</td>
<td>13</td>
</tr>
<tr>
<td>Hałas infradźwiękowy</td>
<td>18</td>
</tr>
<tr>
<td>Hałas ultradźwiękowy</td>
<td>20</td>
</tr>
<tr>
<td>Drgania</td>
<td>24</td>
</tr>
<tr>
<td>Podział drgań mechanicznych i ich źródła w środowisku pracy</td>
<td>24</td>
</tr>
<tr>
<td>Skutki oddziaływania drgań mechanicznych na organizm człowieka</td>
<td>25</td>
</tr>
<tr>
<td>Kryteria oceny ekspozycji na drgania - wartości dopuszczalne</td>
<td>27</td>
</tr>
<tr>
<td>Metody ograniczania zagrożeń drganiami mechanicznymi</td>
<td>28</td>
</tr>
<tr>
<td>Klasyfikacja czynników mechanicznych</td>
<td>29</td>
</tr>
<tr>
<td>Rodzaje zagrożeń mechanicznych</td>
<td>30</td>
</tr>
<tr>
<td>Identyfikacja zagrożeń mechanicznych</td>
<td>33</td>
</tr>
<tr>
<td>Zapobieganie zagrożeniom powodowanym czynnikami mechanicznymi</td>
<td>33</td>
</tr>
<tr>
<td>Eliminowanie lub ograniczanie czynników mechanicznych</td>
<td>34</td>
</tr>
<tr>
<td>Podstawowe środki zapobiegania zagrożeniom powodowanym przez czynniki mechaniczne</td>
<td>39</td>
</tr>
<tr>
<td>Pozostałe środki zmniejszające ryzyko związane z zagrożeniami mechanicznymi</td>
<td>42</td>
</tr>
<tr>
<td>Elektryczność statyczna i energia elektryczna</td>
<td>44</td>
</tr>
</tbody>
</table>
Zagrożenia towaryszące wykorzystaniu energii elektrycznej .. 44
Oddziaływanie prądu elektrycznego na organizm ludzki ... 44
Działanie termiczne prądu .. 48
Ochrona przeciwporażeniowa ... 48
Uwalnianie porażonego spod działania prądu elektrycznego i jego ratowanie 54
Zagrożenia od wyładowań atmosferycznych i ochrona odgromowa ... 56
Zagrożenia pożarowe od urządzeń elektrycznych .. 57
Zagrożenia wybuchowe od urządzeń elektrycznych .. 59
Zagrożenia od elektryczności statycznej i ochrona przed nią .. 60
Pola elektromagnetyczne .. 62
Wprowadzenie .. 62
Promieniowanie optyczne ... 65
Skutki działania promieniowania optycznego na organizm człowieka .. 66
Sposoby ochrony człowieka przed nadmiernym promieniowaniem optycznym w środowisku pracy 68
Oświetlenie .. 69
Zasady i rodzaje oświetlenia ... 71
Parametry oświetlenia .. 73
Źródła światła .. 76
Oprawy oświetleniowe ... 78
Oświetlenie pomieszczeń z komputerami ... 79
Wymagania dotyczące oświetlenia ... 80
Mikroklimat .. 81
Wymiana ciepła między człowiekiem a jego otoczeniem ... 81
Komfort cieplny .. 82
Środowisko gorące .. 83
Środowisko zimne .. 83
Środowiska termiczne niejednorodne i o parametrach zmiennych w czasie 84
Substancje chemiczne .. 85
Wartości najwyższych dopuszczalnych stężeń substancji chemicznych 86
Zagrożenia związane ze stosowaniem substancji i preparatów chemicznych 87
ZAGROŻENIA BIOLOGICZNE .. 90
Czynniki biologiczne - Informacje ogólne .. 90
Klasyfikacja ... 91
Występowanie i rozprzestrzenianie ... 92
<table>
<thead>
<tr>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Działanie na organizm ludzki</td>
</tr>
<tr>
<td>Czynniki biologiczne - Narażone grupy zawodowe</td>
</tr>
<tr>
<td>Krótki przegląd najważniejszych czynników biologicznych w układzie systematycznym</td>
</tr>
<tr>
<td>Wykrywanie i pomiary liczbowe biologicznych czynników środowiska pracy</td>
</tr>
<tr>
<td>Główne kierunki i zasady profilaktyki i zwalczania czynników biologicznych</td>
</tr>
<tr>
<td>Zagrożenia biologiczne - Środki ochrony indywidualnej</td>
</tr>
<tr>
<td>Wymagania wobec środków ochrony indywidualnej układu oddechowego</td>
</tr>
<tr>
<td>Odzież ochronna</td>
</tr>
<tr>
<td>Rękawice ochronne</td>
</tr>
<tr>
<td>Obuwie ochronne</td>
</tr>
<tr>
<td>Sprzęt ochrony oczu i twarzy</td>
</tr>
<tr>
<td>Pyły</td>
</tr>
<tr>
<td>Pyły emitowane na stanowiskach pracy</td>
</tr>
<tr>
<td>Szkodliwe działanie pyłów na człowieka</td>
</tr>
<tr>
<td>Ocena narażenia zawodowego na pyły</td>
</tr>
<tr>
<td>Pomiary stężenia pyłów na stanowiskach pracy</td>
</tr>
<tr>
<td>Najwyższe dopuszczalne stężenia pyłów</td>
</tr>
<tr>
<td>Tryb i częstotliwość wykonywania badań i pomiarów pyłów</td>
</tr>
<tr>
<td>Ocena ryzyka związanego z narażeniem na pyły</td>
</tr>
<tr>
<td>Zapobieganie skutkom narażenia na pyły</td>
</tr>
<tr>
<td>Proces oceny ryzyka zawodowego w przedsiębiorstwie</td>
</tr>
</tbody>
</table>
Czynniki zagrożeń w środowisku pracy

Światowa Organizacja Zdrowia (WHO) określa, że 52% światowej populacji aż jedną trzecią dorosłego życia przebywa w pracy, aktywnie uczestnicząc w wytwarzaniu dóbr dla potrzeb ogółu społeczeństwa. Wykonywaniu pracy towarzyszą z reguły niebezpieczne, szkodliwe i uciąŜliwe czynniki. Obowiązkiem pracodawcy jest podejmowanie działań, zwłaszcza technicznych i organizacyjnych, likwidujących lub co najmniej ograniczających powodowane przez te czynniki zagroŜenia zawodowe. Negatywnym skutkiem zagroŜeń zawodowych w skali świata jest liczba 300 000 osób, które codziennie ulega wypadkom przy pracy (tj. tyle, ilu mieszkańców liczy np. Białystok, Gliwice, Radom), w tym: 30 000 osób ulega wypadkom cięŜkim (tj. tyle, ilu mieszkańców liczy np. Augustów, Kłodzko, Zakopane) i 600 osób ulega wypadkom śmiertelnym (tak, jakby codziennie rozbijał się jeden Boeing 747 z kompletem pasażerów na pokładzie).

Właściwe rozpoznanie zagroŜeń tymi czynnikami i związanego z nimi ryzyka stanowi podstawę do podejmowania różnorodnych działań profilaktycznych. Pracodawcy bądź nawet pracownicy, zatrudnieni w małych i średnich przedsiębiorstwach, którzy samodzielnie podejmują się oceny ryzyka zawodowego, powinni dokładnie przeanalizować miejsce pracy i określić, co mogłoby spowodować wypadek lub niekorzystnie wpływać na ich zdrowie oraz przebywających wspólnie innych osób.

Niebezpieczne i szkodliwe czynniki fizyczne występujące w środowisku pracy (podział)

Czynniki materialnego środowiska pracy:
1. oświetlenie,
2. mikroklimat,
3. hałas, w tym hałas ultradźwiękowy i infradźwiękowy,
4. wibracja (precyzyjniej: drgania mechaniczne przenoszone na organizm człowieka z ciał stałych),
5. pył przemysłowy,
6. promieniowanie laserowe,
7. promieniowanie nadfioletowe;
8. promieniowanie podczerwone,
9. pola elektryczne i magnetyczne
10. promieniowanie jonizujące (promieniowanie elektromagnetyczne i promieniowanie cząsteczkowe)

Czynniki urazowe:
1. Przemieszczające się maszyny i inne urządzenia
2. Ruchome części maszyn i ich oprzyrządowania i poruszające się narzędzia
3. Przemieszczające się wyroby, półwyroby, materiały i surowce
4. Naruszenie konstrukcji
5. Spadające przedmioty (obłuzowane części maszyn, narzędzia, materiały, kamienic, odłamki ska! itp.)
6. Ostre wystające elementy: ostrza, ostre krawędzie, szorstkie powierzchnie
7. Położenie stanowiska pracy na poziomie różnym od powierzchni otoczenia
8. Ograniczone, waśkie przestrzenie, dojścia, przejścia
9. Śliskie, nierówne powierzchnie
10. Gorące lub zimne powierzchnie i substancje

Czynniki związane ze zjawiskiem elektryczności:
1. elektryczność statyczna,
2. napięcie w obwodzie elektrycznym do 1 kV.
3. napięcie w obwodzie elektrycznym powyżej 1 kV.

Niebezpieczne i szkodliwe czynniki chemiczne występujące w środowisku pracy (podział)

Ze względu na możliwe oddziaływanie na organizm człowieka wyróżniamy następujące substancje:

1. toksyczne,
2. drażniące,
3. uczulające,
4. rakotwórcze,
5. mutagenne.
6. upośledzające funkcje rozrodcze.

Ze względu na drogi przenikania do organizmu człowieka wyróżniamy substancje przenikające przez:

1. drogi oddechowe,
2. skórę i błony śluzowe,
3. przewód pokarmowy.

Niebezpieczne i szkodliwe czynniki biologiczne występujące w środowisku pracy

W tej kategorii wyróżniamy następujące czynniki:

1. mikroorganizmy,
2. makroorganizmy,
3. substancje wytwarzane przez organizmy żywe,
4. biomasa.

Niebezpieczne i szkodliwe czynniki psychofizyczne występujące w środowisku pracy

W tej kategorii wyróżniamy następujące czynniki:

1. obciążenie fizyczne statyczne,
2. obciążenie fizyczne dynamiczne,
3. obciążenie umysłu,
4. niedociągnięcie lub przeciążenie percepcji,
5. obciążenie emocjonalne.

Inne czynniki

Np. czynniki odrażające, nieprzyjemne lub dodatkowo obciążające (np., ostre zapachy), zanieczyszczenia, wymuszony kontakt z wodą, praca w uciążliwych warunkach atmosferycznych (zwłaszcza podczas opadów) itp.
Hałas

Hałasem przyjęto określać wszelkie niepożądane, nieprzyjemne, dokuczliwe, uciążliwe lub szkodliwe dźwięki oddziałujące na narząd słuchu i inne zmysły oraz części organizmu człowieka.

Z fizycznego punktu widzenia, dźwięki są to drgania mechaniczne ośrodka sprzężystego (gazu, cieczy lub ośrodka stałego). Drgania te mogą być rozpatrywane jako oscylacyjny ruch cząstek ośrodka względem położenia równowagi, wywołujący zmianę ciśnienia ośrodka w stosunku do wartości ciśnienia statycznego (atmosferycznego).

Ta zmiana ciśnienia, (czyli zaburzenie równowagi ośrodka) przenosi się w postaci następujących po sobie lokalnych zagęszczeń i rozrzedzeń cząstek ośrodka w przestrzeni otaczającej źródło drgań, tworząc falę akustyczną. Różnica między chwilową wartością ciśnienia w ośrodku przy przejściu fali akustycznej a wartością ciśnienia statycznego (atmosferycznego) jest zwana ciśnieniem akustycznym p, wyrażanym w Pa.

Ze względu na szeroki zakres zmian ciśnienia akustycznego - od $2 \cdot 10^{-5}$ do $2 \cdot 10^{2}$ Pa powszechnie stosuje się skalę logarytmiczną i w konsekwencji użycia pojęcia poziom ciśnienia akustycznego L, wyrażany w dB.

Wszystkie wielkości charakteryzujące ekspozycję (narażenie) na hałas w środowisku pracy, o których będzie mowa w dalszych częściach tego rozdziału, tj.: maksymalny poziom dźwięku A, szczytowy poziom dźwięku C, równoważny poziom dźwięku A, poziom ekspozycji na hałas odniesiony do 8-godzinnego dnia lub tygodnia pracy, są wielkościami pochodnymi poziomu ciśnienia akustycznego. Maksymalny poziom dźwięku A oznacza maksymalną wartość skuteczną poziomu dźwięku A występującą w czasie obserwacji, a szczytowy poziom dźwięku C - maksymalną wartość chwilową poziomu dźwięku C występującą w czasie obserwacji.

Wielkości charakteryzujące zjawiska akustyczne, których znajomość jest potrzebna do skutecznego stosowania technicznych środków zwalczania hałasu, to:

- poziom ciśnienia akustycznego oraz jego pochodne
- prędkość rozchodzenia się fali akustycznej (prędkość dźwięku) c, czyli prędkość rozprzestrzeniania się zaburzenia równowagi ośrodka, definiowana jako stosunek drogi przebytej przez zaburzenie w elementarnym przedziale czasu do wartości tego przedziału; na przykład, w powietrzu o temperaturze 20 °C i pod normalnym ciśnieniem atmosferycznym prędkość ta wynosi 340 m/s

- okres drgań akustycznych T- najmniejszy przedział czasu, po którym powtarza się ten sam stan obserwowanego zjawiska (drgania lub zaburzenia)

- częstotliwość drgań akustycznych (częstotliwość dźwięku) f- liczba okresów drgań w jednostce czasu

- długość fali akustycznej A - odległość między dwoma kolejnymi punktami, mierzona w kierunku rozprzestrzeniania się zaburzenia, w którym drgania mają tę samą fazę (lub: odległość, którą czoło fali przebędzie w ciągu jednego okresu).

Długość fali akustycznej λ, w m, określa się wzorem:

$$\lambda = \frac{c}{f}$$

gdzie:

c - prędkość dźwięku, w m/s

f- częstotliwość, w Hz.

Dla zakresu częstotliwości słyszalnych f= 16-16 000 Hz długości fal akustycznych wynoszą: λ = 21—0,021 m.

W uproszczeniu można przyjąć, że hałas najczęściej stanowi sumę dużej liczby drgań sinusoidalnych. Rozkładanie drgań złożonych na sumę drgań prostych nazywa się wyznaczaniem widma lub analizą widmową (częstotliwościową) hałasu.

Z propagacją fali akustycznej w ośrodku wiąże się transmisja energii zaburzenia. Energię fali akustycznej charakteryzują następujące pojęcia i wielkości:

- moc akustyczna źródła P, w W - miara ilości energii wypromieniowanej przez źródło w jednostce czasu:

$$P = \frac{E}{t}$$

gdzie:

E - energia akustyczna źródła, w W • s

f - czas, w s

- natężenie dźwięku I, w W/m² - wartość mocy akustycznej przepływającej przez jednostkową powierzchnię prostopadłą do kierunku rozchodzenia się fali akustycznej:

$$I = \frac{P}{S}$$

gdzie:

P- moc akustyczna, w W

S - pole powierzchni, w m².
Między natężeniem dźwięku \(I \), w W/m\(^2\), a ciśnieniem akustycznym \(p \) (dla fali płaskiej) istnieje następujący związek:

\[
I = \frac{p^2}{p \cdot c}
\]

gdzie:

\(p \) - gęstość ośrodka, w kg/m\(^3\)
\(c \) - prędkość dźwięku, w m/s.

Energii fali akustycznej charakteryzują następujące wielkości:

- moc akustyczna źródła będąca miarą ilości energii wyprostowaniowej przez źródło w jednostce czasu, wyrażana w W
- natężenie dźwięku, czyli wartość mocy akustycznej przepływającej przez jednostkową powierzchnię prostopadłą do kierunku rozchodzenia się fali akustycznej, wyrażane w W/m\(^2\).

Podobnie jak w przypadku ciśnienia akustycznego, ze względu na szeroki przedział zmienności wartości mocy akustycznej i natężenia dźwięku, stosuje się skalę logarytmiczną oraz pojęcia: poziom mocy akustycznej i poziom natężenia dźwięku, wyrażane w dB.

Poziom mocy akustycznej jest podstawową wielkością charakteryzującą emisję hałasu z jego źródła. Stąd też, jest stosowany do oceny hałasu maszyn. Wyznacza się go na podstawie pomiarów ciśnienia akustycznego lub natężenia dźwięku.

W uproszczeniu można powiedzieć, że hałas stanowi zbiór dźwięków o różnych częstotliwościach i różnych wartościach ciśnienia akustycznego. Rozkład dźwięków złożonych na sumę dźwięków prostych (tonów) nazywamy wyznaczaniem widma lub analizą widmową (częstotliwościową) hałasu.

Ze względu na zakres częstotliwości rozróżnia się:

- hałas infradźwiękowy, w którego widmie występują składowe o częstotliwościach infradźwiękowych od 1 do 20 Hz i o niskich częstotliwościach słyszalnych
- hałas słyszalny, w którego widmie występują składowe o częstotliwościach słyszalnych od 20 do 20 kHz
- hałas "ultradźwiękowy", w którego widmie występują składowe o wysokich częstotliwościach słyszalnych i niskich ultradźwiękowych od 10 do 40 kHz

Ze względu na przebieg w czasie, hałas określa się jako ustalony, gdy poziom dźwięku A w określonym miejscu zmienia się w czasie nie więcej niż o 5 dB lub nieustalony (zmieniły w czasie, przerywany), gdy poziom dźwięku A w określonym miejscu zmienia się w czasie o więcej niż 5 dB. Rodzajem hałasu nieustalonego jest tzw. hałas impulsowy, składający się z jednego lub wielu zdarzeń dźwiękowych, każde o czasie trwania mniejszym niż 1 s.

Ze względu na charakter oddziaływania hałasu na organizm człowieka, wyróżnia się hałas uciążliwy nie wywołujący trwałych skutków w organizmie oraz hałas szkodliwy wywołujący trwałe skutki lub powodujący określone ryzyko ich wystąpienia.

Istnieją również inne podziały hałasu, np. podział uwzględniający przyczynę jego powstania i klasyfikację jego źródeł. Wyróżnia się, np.: hałas aerodynamiczny, powstający w wyniku przepływu powietrza lub innego gazu oraz hałas mechaniczny, powstający wskutek tarcia i zderzeń ciał stałych, w tym głównie części maszyn.

Stosowany jest także podział ze względu na środowisko, w którym hałas występuje. Hałas w przemyśle, zwany jest hałasem przemysłowym, hałas w pomieszczeniach mieszkalnych, miejscach użyteczności publicznej i terenach wypoczynkowych - hałasem komunalnym, a w środowiskach komunikacji - hałasem komunikacyjnym.
Rysunek 1. Podział dźwięków w zależności od częstotliwości

Wpływ hałasu na organizm człowieka i jego skutki

Ujemne oddziaływanie hałasu na organizm człowieka w warunkach narażenia zawodowego można podzielić na dwa rodzaje:

- wpływ hałasu na narząd słuchu
- pozasłuchowe działanie hałasu na organizm (w tym na podstawowe układy i narządy oraz zmysły człowieka).

Szkodliwy wpływ hałasu na narząd słuchu powodują następujące jego cechy i okoliczności narażenia:

- równoważny poziom dźwięku A (dla hałasu nieustalonego) lub poziom dźwięku A (dla hałasu ustalonego) przekraczający 80 dB; bodźce słabsze nie uszkadzają narządu słuchu nawet przy długotrwałym nieprzerwanym działaniu
- długi czas działania hałasu; skutki działania hałasu kumulują się w czasie; zależą one od dawki energii akustycznej, przekazanej do organizmu w określonym przedziale czasu,
- ciągła ekspozycja na hałas jest bardziej szkodliwa niż przerwana; nawet krótkotrwałe przerwy umożliwiają bowiem procesy regeneracyjne słuchu,
- hałas impulsowy jest szczególnie szkodliwy; charakteryzuje się on tak szybkim narastaniem ciśnienia akustycznego do dużych wartości, że mechanizmy obronne narządu słuchu zapobiegające wnikaniu energii akustycznej do ucha nie zdołają zadziałać,
- widmo hałasu z przewagą składowych o częstotliwościach średnich i wysokich. Hałas o takim widmie jest dla słuchu bardziej niebezpieczny, niż hałas o widmie, w którym maksymalna energia zawarta jest w zakresie niskich częstotliwości; wynika to z charakterystyki czułości ucha ludzkiego, która jest największa w zakresie częstotliwości 3 ÷ 5 kHz,
- szczególna, indywidualna podatność na uszkadzający wpływ działania hałasu; zależy ona od cech dziedziczących oraz nabytych np. w wyniku przebytych chorób.

<table>
<thead>
<tr>
<th>Równoważny poziom dźwięku A, dB</th>
<th>Czas narażenia, lata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>mniejsze od 80</td>
<td>0</td>
</tr>
<tr>
<td>85</td>
<td>1</td>
</tr>
<tr>
<td>90</td>
<td>4</td>
</tr>
<tr>
<td>95</td>
<td>7</td>
</tr>
<tr>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td>105</td>
<td>18</td>
</tr>
<tr>
<td>110</td>
<td>26</td>
</tr>
<tr>
<td>115</td>
<td>36</td>
</tr>
</tbody>
</table>
Ilustracją problemu zróżnicowanej osobniczej podatności na hałas są dane zawarte w tablicy. Wynika z nich, że przy równoważnym poziomie dźwięku A równym 90 dB, w ciągu 40 lat pracy w takim środowisku ryzyko utraty słuchu wynosi 21%, czyli 21% narażonych może doznać uszkodzeń słuchu. Zmniejszenie poziomu dźwięku do 85 dB powoduje zmniejszenie liczby poszkodowanych do 10% całej populacji. W grupie tej znajdują się głównie osoby o szczególną podatność na szkodliwy wpływ hałasu.

Skutki wpływu hałasu na organ słuchu dzieli się na:

- uszkodzenia struktur anatomicznych narządu słuchu (perforacje, ubytki błony bębenkowej), będące zwykle wynikiem jednorazowych i krótkotrwałych ekspozycji na hałas o szczytowych poziomach ciśnienia akustycznego powyżej 130 ÷ 140 dB
- upośledzenie sprawności słuchu w postaci podwyższenia progu słyszenia, w wyniku długotrwałego narażenia na hałas, o równoważnym poziomie dźwięku A przekraczającym 80 dB.

Podwyższenie progu może być odwracalne (tzw. czasowe przesunięcie progu) lub trwałe (trwały ubytek słuchu).

Obustronne trwały ubytek słuchu typu ślimakowego spowodowany hałasem, wyrażony podwyższeniem progu słyszenia o wielkości co najmniej 45dB w uchu lepiej słyszącym, obliczony jako średnia arytmetyczna dla częstotliwości audiometrycznych 1, 2 i 3 kHz, stanowi kryterium rozpoznania i orzeczenia zawodowego uszkodzenia słuchu, jako choroby zawodowej. Obustronny trwały ubytek słuchu typu ślimakowego - trwałe, nie dające się rehabilitować inwalidztwo - znajduje się od lat na czołowym miejscu na liście chorób zawodowych.

Pozasłuchowe skutki działania hałasu nie są jeszcze w pełni rozpoznane. Anatomiczne połączenie nerwowej drogi słuchowej z korą mózgów umożliwi bodźcom słuchowym oddziaływanie na inne ośrodki w mózgu (zwłaszcza ośrodkowy układ nerwowy i układ gruczołów wydzielania wewnętrznego), a w konsekwencji na stan i funkcje wielu narządów wewnętrznych.

Bodźce słuchowe mogą zatem wpływać na wszelkie funkcje organizmu, nawet wtedy, kiedy nie dochodzi do powstawania wrażeń słuchowych oraz w stanach ograniczonej świadomości. Potwierdzają to odruchowe reakcje na hałas układu oddechowego, układu krążenia krwi, przewodu pokarmowego i wielu innych narządów.

Przykładem fizjologicznych reakcji pozasłuchowych mogą być odruchy motoryczne, np. skurcz mięśni pod wpływem niespodziewanego sygnału (np. eksplozji lub wystrzału) zmieniający całą postawę ciała, co z kolei może być powodem wypadku w pracy. Obserwowano również inne reakcje organizmu, np. zmniejszenie częstości oddechów, reakcję układu krążenia wyrażającą się przede wszystkim skurczem obwodowych naczyń krwionośnych, zmniejszenie intymności pręży igetto jub jetc.

Doświadczalnie wykazano, że wyraźne zaburzenia funkcji fizjologicznych organizmu mogą występować po przekroczeniu poziomu ciśnienia akustycznego 75 dB. Słabsze bodźce akustyczne (o poziomie 55 ÷ 75 dB) mogą powodować rozproszenie uwagi, utrudniać pracę i zmniejszać jej wydajność.

Można stwierdzić, że pozasłuchowe skutki działania hałasu są uogólnioną odpowiedzią organizmu na działanie hałasu, jako stresora przyczyniającego się do rozwoju różnych typu chorób (np. choroba ciśnieniowa, choroba wrzodowa, nerwice i inne).

Wśród pozasłuchowych skutków działania hałasu, należy jeszcze wymienić jego wpływ na zrozumiałość i maskowanie mowy czy dźwiękowych sygnałów bezpieczeństwa. Utrudnione porozumiewanie się ustne w hałasie (o poziomie 80 ÷ 90 dB) i maskowanie sygnałów ostrzegawczych nie tylko zwiększa uciążliwość warunków pracy i zmniejsza jej wydajność, lecz może być również przyczyną wypadków przy pracy. Kryterium zrozumiałości mowy stanowi jedno z ważniejszych kryteriów oceny hałasu w środowisku.

Pomiar i ocena wielkości charakteryzujących hałas w środowisku - ocena ryzyka zawodowego związana z narażeniem na hałas

Ze względu na cel (określenie emisji hałasu maszyn lub ocena narażenia ludzi) metody pomiarów hałasu dzieli się na:

- metody pomiarów hałasu maszyn
metody pomiarów hałasu w miejscach przebywania ludzi (na stanowiskach pracy).

Metody pomiarów hałasu maszyn stosuje się w celu określania wielkości charakteryzujących emisję hałasu maszyn, rozpatrywanym jako oddzielne źródła hałasu w ustalonych warunkach doświadczalnych i eksploatacyjnych. Zgodnie z przepisami europejskimi (Dyrektywa 98/37/WE) wielkościami tymi są: poziom mocy akustycznej lub poziom ciśnienia akustycznego emisji na stanowisku pracy maszyny lub w innych określonych miejscach. Wybór wielkości zależy od wartości emisji hałasu. Poziom mocy akustycznej powinien być podany, gdy usredniony poziom ciśnienia akustycznego emisji skorygowany charakterystyką częstotliwościową A (zwany równoważnym poziomem dźwięku A) na stanowisku pracy maszyny przekracza 85 dB.

Metody pomiarów i oceny hałasu w miejscach przebywania ludzi stosuje się w celu ustalenia wielkości narażenia ludzi na działanie hałasu na stanowiskach pracy i w określonych miejscach przebywania ludzi względem źródeł hałasu, niezależnie od ich rodzaju i liczeby. Wyniki pomiarów hałasu służą przede wszystkim do porównania istniejących warunków akustycznych z warunkami określonymi przez normy i przepisy higieniczne, a także do oceny i wyboru planowanych lub realizowanych przedsięwzięć ograniczających hałas.

Do pomiaru wielkości charakteryzujących wszystkie rodzaje hałasu (ustalonego, nieustalonego i impulsowego) powinny być stosowane dozimetry hałasu lub całkujące mierniki poziomu dźwięku klasy dokładności 2 lub lepszej (spełniającej wymagania normy PN-EN 61672-1:2005 i PN-EN 61252:2000).

Pomiar przeprowadza się dwiema metodami: bezpośrednią i pośrednią. Metoda bezpośrednia polega na ciągłym pomiarze przez cały czas narażenia pracownika na hałas i odczytaniu wielkości określanych bezpośrednio z mierników, np. dozymetru hałasu lub całkującego miernika poziomu dźwięku. Umożliwia ona otrzymanie wyników, które dokładnie oddają narażenie pracownika na hałas. Metoda pośrednia polega na pomiarze hałasu w czasie krótszym niż podlegający ocenie oraz zastosowaniu odpowiednich zależności matematycznych do wyznaczenia wymienionych wielkości.

Tryb i częstotliwość wykonywania pomiarów, sposób rejestrowania i przechowywania wyników oraz sposób ich udostępnienia pracownikom określa rozporządzenie ministra zdrowia i opieki społecznej.

Ocenię narażenia na hałas i ocenę ryzyka zawodowego związanego z tym narażeniem przeprowadza się na podstawie porównania wyników pomiarów wielkości charakteryzujących hałas z wartościami najwyższych dopuszczalnych natężeń (NDN) i wartościami progów działania, przy których pracodawca jest zobowiązany podjąć określone działania prewencyjne.

Wartości dopuszczalne hałasu w środowisku pracy (wartości NDN), ustalone ze względu na ochronę słuchu, określa rozporządzenie ministra pracy i polityki społecznej. Wartości te wynoszą:

- poziom ekspozycji na hałas odniesiony do 8-godzinnego dobowego wymiaru czasu pracy (LEX,8h) nie powinien przekraczać 85 dB, a odpowiadająca mu ekspozycja dzienna nie powinna przekraczać 3,64-103 Pa2-s; lub - wyjątkowo w przypadku hałasu oddziałującego na organizm człowieka w sposób nierównomierny w poszczególnych dniach w tygodniu - poziom ekspozycji na hałas odniesiony do przeciętnego tygodniowego wymiaru czasu pracy (LEX,W) nie powinien przekraczać wartości 85 dB, a odpowiadająca mu ekspozycja tygodniowa nie powinna przekraczać wartości 18,2 - 103 Pa2 · s;
- maksymalny poziom dźwięku A (LAmax) nie powinien przekraczać 115 dB;
- szczytowy poziom dźwięku C (LCpeak) nie powinien przekraczać 135 dB.

Wartości progów działania określa rozporządzenie ministra gospodarki i pracy w sprawie bezpieczeństwa i higieny pracy przy pracach związanych z narażaniem na hałas lub drgania mechaniczne. Wartości te wynoszą:
poziom ekspozycji na hałas odniesiony do 8-godzinnego dobowego wymiaru czasu pracy lub poziomu ekspozycji na hałas odniesiony do tygodnia pracy - 80 dB;

sztutowy poziom dźwięku C - 135 dB.

Podane wyżej wartości normatywne obowiązują, jeżeli inne szczegółowe przepisy nie określają wartości niższych (np. na stanowisku pracy młodocianego - L_{EX,8h} = 80 dB, na stanowisku pracy kobiety w ciąży - L_{EX,8h} = 65 dB).

Stan narażenia i źródła hałasu w środowisku pracy

Według danych GUS blisko 40% pracowników zatrudnionych w Polsce w warunkach zagrożenia czynnikami szkodliwymi i uciążliwymi pracuje w hałasie ponadnormatywnym - o poziomie ekspozycji powyżej 85 dB (dane te nie są pełne, gdyż badania GUS obejmują zatrudnionych w przedsiębiorstwach wynosi 10 i więcej osób).

Najbardziej narażeni są pracownicy zatrudnieni w zakładach zajmujących się następującymi rodzajami działalności (określonymi według Europejskiej Klasyfikacji Działalności): działalnością produkcyjną (zwłascia produkcją metali, drewna i wyrobów z metali), górnictwem , budownictwem oraz transportem.

Przyjmując, że głównymi źródłami hałasu, które występują na stanowiskach pracy są maszyny, urządzenia lub procesy technologiczne, można wyróżnić następujące podstawowe grupy źródeł hałasu:

- maszyny stanowiące źródło energii, np. silniki spalinowe (maksymalne poziomy dźwięku A do 125 dB), sprężarki (do 113 dB)
- narzędzia i silniki pneumatyczne, np. ręczne narzędzia pneumatyczne: młotki, przecinaki, szlifierki (do 134 dB)
- maszyny do rozdrabniania, kruszenia, przesiewania, przecinania, oczyszczania, np. młyny kulowe (do 120 dB), sita wibracyjne (do 119 dB), kruszarki (do 119 dB), kraty wstrząsowe (do 115 dB), płyty tarczowe do metalu (do 115 dB)
- maszyny do obróbki plastycznej, np. młoty mechaniczne (do 122 dB), prasy (do 115 dB)
- obrabiarki skrawające do metalu, np. szlifierki, automaty tokarskie, wiertarki (do 104 dB)
- obrabiarki skrawające do drewna, np. dłutownice (do 108 dB), strugarki (do 101 dB), frezarki (do 101 dB), płyty tarczowe (do 99 dB)
- maszyny włókiennicze, np. przewijarki (do 114 dB), krosna (do 112 dB), przedzarki (do 110 dB), rozciągarki (do 104 dB), skręcarki (do 104 dB), zgrzeblarki (do 102 dB)
- urządzenia przepływowe, np. zawory (do 120 dB), wentylatory (do 114 dB)
- urządzenia transportu wewnętrz zakładowego, np. suwnice, przenośniki, przesy, podajniki (do 112 dB)

Metody i środki ochrony przed hałasem

Zgodnie z przepisami europejskimi dyrektywa 2003/10/WE) i krajowymi, pracodawca eliminuje u źródła ryzyko zawodowe związane z narażeniem na hałas albo ogranicza je do możliwie najniższego poziomu, uwzględniając dostępne rozwiązania techniczne oraz postęp naukowo-techniczny.

W przypadku osiągnięcia lub przekroczenia wartości NDN pracodawca sporządza i wprowadza w życie program działań organizacyjno-technicznych zmierzających do ograniczenia narażenia na hałas. Program powinien uwzględniać w szczególności:

- unikanie procesów lub metod pracy powodujących narażenie na hałas i zastępowanie ich innymi, stwarzającymi mniejsze narażenie
- dobieranie środków pracy o możliwie najmniejszym poziomie emisji hałasu
- ograniczanie narażenia na hałas takimi środkami technicznymi, jak: obudowy dźwiękoizolacyjne maszyn, kabiny dźwiękoszczelne dla personelu, tłumiki, ekran i materiały dźwiękochłonne
- projektowanie miejsc pracy i rozmieszczanie stanowisk pracy w sposób umożliwiający izolację od źródeł hałasu oraz ograniczających jednocześnie oddziaływanie wielu źródeł na pracownika
- ograniczanie czasu i poziomu narażenia oraz liczby osób narażonych na hałas przez właściwą organizację pracy, w szczególności stosowanie skróconego czasu pracy lub przerw w pracy i rotacji na stanowiskach pracy.

Rysunek 2. Stosowane środki techniczne umożliwiające ograniczenie hałasu na stanowiskach pracy

Pracodawca oznacza znakami bezpieczeństwa miejsca pracy, w których wielkości charakteryzujące hałas przekraczają NDN oraz wydziela strefy z takimi miejscami i ogranicza do nich dostęp, jeśli jest to technicznie wykonalne.

Narażenie indywidualne pracownika (rzeczywiste narażenie po uwzględnieniu tłumienia uzyskanego w wyniku stosowania środków ochrony indywidualnej słuchu) nie może przekroczyć wartości NDN.

Gdy uniknięcie lub wyeliminowanie ryzyka zawodowego wynikającego z narażenia na hałas nie jest możliwe za pomocą wymienionych środków technicznych lub organizacji pracy, wówczas pracodawca udostępnia pracownikom środki ochrony indywidualnej (w przypadku przekroczenia wartości progów działania) oraz zobowiązuje pracowników do stosowania środków ochrony indywidualnej słuchu i nadzoruje prawidłowość ich stosowania (w przypadku osiągnięcia lub przekroczenia wartości NDN).

Pracodawca zapewnia pracownikom narażonym na działanie hałasu informacje i szkolenia w zakresie wyników oceny ryzyka zawodowego, potencjalnych jego skutków i środków niezbędnych do wyeliminowania lub ograniczania tego ryzyka.

Pracownicy narażeni na działanie hałasu podlegają okresowym badaniom lekarskim. Badania ogólne wykonuje się co 4 lata, a badania otolaryngologiczne i audiometryczne: przez pierwsze trzy lata pracy w hałasie - co rok, następnie co 3 lata. W razie ujawnienia w okresowym badaniu audiometrycznym ubytków słuchu charakteryzujących się znaczną dynamiką rozwoju, częstotliwość badań audiometrycznych należy zwiększyć, skracając przerwę między kolejnymi testami do 1 roku lub 6 miesięcy. W razie narażenia na hałas impulsowy albo na hałas, którego równoważny poziom dźwięku A przekracza stałe lub często 110 dB, badanie audiometryczne należy przeprowadzać nie rzadziej niż raz na rok.

Techniczne środki ograniczania hałasu
Zmiana hałaśliwego procesu technologicznego na mniej hałaśliwy

Najgłośniejsze procesy produkcyjne można zastąpić cichszymi, np. kucie młotem można zastąpić walcowaniem i tłoczeniem, natomiast obróbkę za pomocą ręcznych narzędzi - obróbką elektryczną i chemiczną oraz narzędziami zmechanizowanymi.

Mechanizacja i automatyzacja procesów technologicznych

Mechanizacja i automatyzacja procesów technologicznych w powiązaniu z kabinami sterowniczymi (dźwiękoizolacyjnymi) dla obsługi jest jednym z najbardziej nowoczesnych, a zarazem najbardziej skutecznych sposobów eliminacji hałasem, wibracją i innymi czynnikami szkodliwymi (np. zapyleniem, wysoką temperaturą, urazami). Większość stosowanych w przemyśle kabin zapewnia redukcję hałasu rzędu 20÷50 dB w zakresie częstotliwości powyżej 500 Hz.

Konstruowanie i stosowanie cichobieżnych maszyn, urządzeń i narzędzi

Zmiany procesów technologicznych oraz wprowadzenie mechanizacji i automatyzacji wymagają dłuższych okresów realizacji i nie dają się stosować przy produkcji małoseryjnej lub nietypowej. Bardzo skuteczne wyciszanie źródeł hałasu można osiągnąć przez zmniejszenie hałaśliwości urządzeń i narzędzi.

Wyciszenie źródeł hałasu w maszynie (ograniczenie emisji dźwięku), można osiągnąć przez:

- redukcję wymuszenia (tj. minimalizację sił wzbudzających drgania oraz ograniczenie ich widma), np. przez dokładne wyrównywanie elementów maszyn , zmianę sztywności i struktury układu, zmianę oporów tarcia
- zmianę warunków aerodynamicznych i hydrodynamicznych (np. przez zmianę geometrii wlotu i wylotu mediów energetycznych i zmianę prędkości ich przepływu)
- redukcję współczynnika sprawności promieniowania (np. przez zmianę wymiarów elementów promieniujących energię wibroakustyczną, zmianę materiałów, odizolowanie płyty w układzie).

Poprawne pod względem akustycznym rozplanowanie zakładu i zagospodarowanie pomieszczeń

Przy projektowaniu budynków zakładów produkcyjnych należy kierować się następującymi zasadami:

- budynki i pomieszczenia, w których jest wymagana cisza (np. laboratoria, biura konstrukcyjne, pomieszczenia pracy koncepcyjnej) powinny być oddzielone od budynków i pomieszczeń, w których odbywają się hałaśliwe procesy produkcyjne
- maszyny i urządzenia powinny być grupowane, o ile to jest możliwe w oddzielnych pomieszczeniach według stopnia ich hałaśliwości.

Rysunek 3. Propagacja fali akustycznej od źródła do stanowiska pracy
Hałas w danym pomieszczeniu może być potęgowany przez niewłaściwe zagospodarowanie pomieszczeń, w tym zbyt gęste rozmieszczenie maszyn. Najmniejsza zalecana odległość między maszynami powinna wynosić 2 ÷ 3 m.

Tłumiki akustyczne

Zmniejszenie hałasu w przewodach, w których odbywa się przepływ powietrza lub gazu (instalacje wentylacyjne, układy wlotowe i wylotowe maszyn przepływowych, np. sprężarek, dmuchaw, turbiny, silników spalinowych), można uzyskać przez zastosowanie tłumików akustycznych. Nowoczesne konstrukcje tłumików akustycznych nie powodują strat mocy maszyny. Polegają one na stworzeniu dużego oporu przepływom nieustalonym, powodującym dużą hałaśliwość, przy równoczesnym przepuszczaniu bez dławienia strumieni ustalonych, dzięki którym odbywa się transport powietrza lub gazu. Do znanych tłumików tego typu należą tłumiki refleksyjne - czyli akustyczne filtry falowe oraz tłumiki absorpcyjne zawierające materiał dźwiękochłonny.

Tłumiki refleksyjne działają na zasadzie odbicia i interferencji fal akustycznych i odznaczają się dobrymi właściwościami tłumiącymi w zakresie małych i średnich częstotliwości. Stosowane są tam, gdzie występują duże prędkości przepływu i wysokie temperatury, a więc w silnikach spalinowych, dmuchawach, sprężarkach, niekiedy w wentylatorach.

Tłumiki absorpcyjne przeciwdziałają przenoszeniu energii akustycznej wzdułu przewodu, przez pochłanianie znacznej jej części głównie przez materiał dźwiękochłonny. Tłumicą przede wszystkim średnie i wysokie częstotliwości i znajdują szerokie zastosowanie w przewodach wentylacyjnych. W praktyce zachodzi często potrzeba stosowania tych dwóch typów tłumików łącznie, gdyż wiele przemysłowych źródeł hałasu emituje energię w szerokim paśmie częstotliwości obejmującym zakres infradźwiękowy i słyszalny.

Odrębną grupę tłumików, w stosunku do tłumików refleksyjnych i absorpcyjnych, zwanych często tłumikami reaktywnymi, stanowią tzw. tłumiki aktywne (omówione dalej).

Obudowy dźwiękochłonno-izolacyjne

Wyciszenie źródła hałasu można osiągnąć przez obudowanie całości lub części hałaśliwej maszyny. Obudowy dźwiękochłonno-izolacyjne maszyn powinny możliwie najskańczej tłumić fale dźwiękowe emitowane przez źródło hałasu, przy czym nie powinny one stanowić przeszkody w normalnej pracy i obsłudze zamkniętych w niej maszyn.

Rysunek 4. Drogi propagacji fali akustycznej od jej źródła do punktu obserwacji (za ekranem)

Typowe, najczęściej stosowane obudowy mają ścianki dźwiękochłonno-izolacyjne wykonane z blachy stalowej wyłożonej od wewnątrz masami tłumiącymi lub materiałami dźwiękochłonnymi. Stosowane bywają również obudowy o ściankach wielowarstwowych.

Prawidłowo wykonane obudowy mogą zmniejszać poziom dźwięku A o 10 ÷ 25 dB. W przypadku obudowy częściowej, jej skuteczność jest znacznie mniejsza i wynosi ok. 5 dB.
Zastosowanie otworów wentylacyjnych i innych otworów, koniecznych ze względów technologicznych, zmniejsza skuteczność obudowy. Konieczne jest wtedy zastosowanie w otworze wentylacyjnym odpowiedniego tłumika akustycznego, np. w postaci kanału wyłożonego materiałem dźwiękochłonnym.

Ekrany dźwiękochłonno-i izolacyjne

Ekrany dźwiękochłonno-izolacyjne stosuje się jako osłony danego stanowiska pracy, w celu tłumienia hałasu emitowanego na to stanowisko przez inne maszyny i z danego stanowiska na zewnątrz. W celu uzyskania maksymalnej skuteczności, ekran należy umieszczać jak najbliżej źródła hałasu lub miejsca pracy.

Zasadniczymi elementami ekranu są: warstwa izolacyjna w środku (najczęściej blacha o odpowiedniej grubości) oraz zewnętrzne warstwy dźwiękochłonne (płyty z wełny mineralnej lub szklanej osłonięte blachą perforowaną).

Stosując ekran w pomieszczeniu zamkniętym, należy wkomponować go w cały układ akustyczny, aby współdziałał z innymi elementami wytłumania energii fal odbitych (materiałami i ustrojami dźwiękochłonnymi). Skuteczność poprawnie zastosowanych ekranów dźwiękochłonno-izolacyjnych ocenia się na $5 \div 15 \text{ dB}$ w odległości ok. $1,5\text{ m}$ za ekranem na osi prostopadłej do jego powierzchni.

Materiały i ustroje dźwiękochłonne

Materiały i ustroje dźwiękochłonne stosowane na ścianach i stropie pomieszczenia zwiększają jego chłonność akustyczną. W ten sposób uzyskuje się zmniejszenie poziomu dźwięku fal odbitych, co prowadzi do zmniejszenia ogólnego poziomu hałasu panującego w danym pomieszczeniu.

Najczęściej stosowanymi materiałami dźwiękochłonnymi są materiały porowate, do których zalicza się: materiały tekstylne, wełny i maty z wełny mineralnej i szklanej, płyty i wyprawy porowate ścian, płyty i maty porowate z tworzyw sztucznych, tworzywa natryskiwane pod ciśnieniem.

Wyboru materiału lub ustroju dźwiękochłonnego należy dokonać tak, aby maksymalne współczynniki pochłaniania dźwięku wypadały w takich zakresach częstotliwości, w których występują maksymalne składowe widma hałasu.

Jak wykazuje praktyka, dobre efekty wytłumienia (zmniejszenie poziomu hałasu o $3 \div 7 \text{ dB}$), można uzyskać jedynie w pomieszczeniach, w których pierwotne pochłanianie jest niewielkie.

Obecnie na rynku dostępne są gotowe układy dźwiękochłonne, takie jak: sufity oraz ścianki działowe, panelowe i osłonowe, produkcji krajowej i zagranicznej.

Ochronniki słuchu

Stosowanie ochronników słuchu jest koniecznym, uzupełniającym środkiem redukcji hałasu tam, gdzie narażenia na hałas nie można wyeliminować innymi środkami technicznymi (z priorytetem środków redukcji hałasu u źródła).

Ochronniki słuchu stosuje się również wówczas, kiedy dany hałas występuje rzadko lub też pracownik obsługujący hałaśliwe urządzenie musi jedynie okresowo wchodzić do pomieszczenia, w którym się ono znajduje. Spełniają one swoje zadanie ochrony narządu słuchu przed nadmiernym hałasem, jeżeli równoważny poziom dźwięku A pod ochronnikiem osiągnie wartość mniejszą od wartości dopuszczalnej (85 dB).

Ze względu na konstrukcję, dzieli się je na: wkładki przeciwhałasowe (jednorazowego lub wielokrotnego użytku), nauszniki przeciwhałasowe (z nagłowną sprężyną dociskową lub nahełmowe), oraz helmy przeciwhałasowe.

Przy dobierze ochronników do konkretnych warunków akustycznych, trzeba ocenić czy rozpatrywany ochronnik będzie w tym przypadku właściwie chronić narząd słuchu. Dobór ochronników słuchu dla określonych stanowisk pracy, przeprowadza się na podstawie pomiarów poziomów ciśnienia.
akustycznego w oktawowych pasmach częstotliwości lub poziomów dźwięku A i C oraz parametrów ochronnych ochronników słuchu, oznakowanych znakiem CE.

Aktywne metody ograniczania hałasu

Hałasem szczególnie trudnym do ograniczania jest hałas niskoczęstotliwościowy. Znane i od lat stosowane tradycyjne (pasywne) metody redukcji hałasu w zakresie częstotliwości poniżej 500 Hz, są mało skuteczne i bardzo kosztowne. W ostatnich latach coraz częściej stosuje się tzw. metody aktywne (czynne), które odgrywają coraz większą rolę wśród technicznych sposobów ograniczania hałasu. Cechą charakterystyczną tych metod jest kompensowanie hałasu dźwiękami z dodatkowych, zewnętrznych źródeł energii.

Ogólna zasada aktywnej kompensacji parametrów pola akustycznego jest następująca:

- źródło pierwotne, zwane źródłem kompensowanym, wytwarza falę akustyczną nazywaną falą pierwotną lub kompensowaną
- źródło wtóre, zwane źródłem kompensującym, wytwarza falę wtórną - kompensującą.

W określonym punkcie przestrzeni, w którym obserwujemy efekt aktywnej kompensacji dźwięku, następuje destrukcyjna interferencja obu fal.

W idealnym przypadku pełna redukcja fali kompensowanej w punkcie obserwacji wystąpi wówczas, gdy fala kompensująca będzie stanowiła idealne odwrócenie fali kompensowanej.

Stosowane w praktyce układy aktywnej redukcji hałasu (wyłącznie w postaci indywidualnych rozwiązań dopasowanych do konkretnych zastosowań), to aktywne tłumiki hałasu maszyn przepływowych i silników spalinowych (osiągane tłumienie wynosi 15 ÷ 30 dB dla częstotliwości do 600 Hz). Inne zastosowania to aktywne ochronniki słuchu. Układ aktywny umożliwia poprawę skuteczności tłumienia hałasu przez ochronniki o 10 ÷ 15 dB w zakresie częstotliwości 50 do 300 Hz.

Hałas infradźwiękowy

Hałasem infradźwiękowym przyjmuje nazywać hałas, w którego widmie występują składowe o częstotliwościach infradźwiękowych od 2 do 20 Hz i o niskich częstotliwościach słyszalnych. Obecnie w literaturze coraz powszechniej używa się pojęcia hałas niskoczęstotliwościowy, które obejmuje zakres częstotliwości o 10 Hz do 250 Hz.

Infradźwięki wchodzące w skład hałasu infradźwiękowego, wbrew powszechnemu nienawiściu o ich niesłyszalności, są odbierane w organizmie specyficzną drogą słuchową (głównie przez narząd słuchu). Słyszalność ich zależy od poziomu ciśnienia akustycznego. Stwierdzono jednak dużą zmienność osobniczą w zakresie percepcji słuchowe infradźwięków, szczególnie dla najniższych częstotliwości. Progi słyszenia infradźwięków są tym wyższe, im niższa jest ich częstotliwość i wynoszą na przykład: dla częstotliwości 6 ÷ 8 Hz około 100 dB, a dla częstotliwości 12 ÷ 16 Hz około 90 dB.

Pozostającą drogą słuchową infradźwięki są odbierane przez receptory czucia wibracji. Progi tej percepcji znajdują się o 20 ÷ 30 dB wyżej niż progi słyszenia.

Gdy poziom ciśnienia akustycznego przekracza wartość 140 dB, infradźwięki mogą powodować trwałe, szkodliwe zmiany w organizmie. Możliwe jest występowanie zjawiska rezonansu struktur i narządów wewnętrznych organizmu, subiektywne odczuwane już od 100 dB jako nieprzyjemne uczucie wewnętrznych wibrowania. Jest to obok ucisku w uszach jeden z najbardziej typowych objawów stwardzonych przez osoby narażone na infradźwięki. Jednak dominującym efektem wpływu infradźwięków na organizm w ekspozycji zawodowej, jest ich działanie uciążliwe, występujące już przy niewielkich przekroczeniach progu słyszenia. Działanie to charakteryzuje się subiektywnie określonymi stanami nadmiernego zmęczenia, dyskomfortu, senności, zaburzeniami równowagi, sprawności psychomotorycznej oraz zaburzeniami funkcji fizjologicznych. Obiektywnym potwierdzeniem tych stanów są zmiany w ośrodkowym układzie nerwowym, charakterystyczne dla obniżenia stanu czuwania, (co jest
szczególnie niebezpieczne np. u operatorów maszyn i kierowców pojazdów).

Głównym źródłem hałasu infradźwiękowego w środowisku pracy są: maszyny przepływowe niskoobrotowe (sprężarki, wentylatory, silniki), urządzenia energetyczne (młyny, kotły, kominy), piece hutnicze (zwłaszcza piece elektryczne łukowe) oraz urządzenia odlewnicze (formierki, kraty wstrząsowe).

Według rozporządzenia ministra pracy i polityki społecznej w sprawie najwyższych dopuszczalnych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy, hałas infradźwiękowy na stanowiskach pracy jest charakteryzowany przez:

- równoważny poziom ciśnienia akustycznego skorygowany charakterystyką częstotliwościową G odniesiony do 8-godzinnego dobowego lub do przeciętnego tygodniowego, określonego w kodeksie pracy, wymiaru czasu pracy (wyjątkowo w przypadku oddziaływania hałasu infradźwiękowego na organizm człowieka w sposób nierównomierny w poszczególnych dniach w tygodniu)
- szczytowy nieskorygowany poziom ciśnienia akustycznego.

Tabela - Wartości dopuszczalne hałasu infradźwiękowego (wartości NDN) określone w rozporządzeniu ministra pracy i polityki społecznej, podane są w tabeli

<table>
<thead>
<tr>
<th>Oceniana wielkość</th>
<th>Wartość dopuszczalna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Równoważny poziom ciśnienia akustycznego skorygowany charakterystyką częstotliwościową G odniesiony do 8-godzinnego, dobowego lub do przeciętnego tygodniowego, określonego w kodeksie pracy, wymiaru czasu pracy, dB</td>
<td>102</td>
</tr>
<tr>
<td>Szczytowy nieskorygowany poziom ciśnienia akustycznego, dB</td>
<td>145</td>
</tr>
</tbody>
</table>

W przypadku stanowisk pracy młodocianych i kobiet w ciąży obowiązują inne wartości dopuszczalne. Zgodnie z rozporządzeniem Rady Ministrów w sprawie wykazu prac wzbryconych młodocianym i rozporządzeniem Rady Ministrów w sprawie wykazu prac szczególnie uciążliwych lub szkodliwych dla zdrowia kobiet, nie wolno zatrudniać kobiet w ciąży w warunkach narażenia na hałas infradźwiękowy, którego:

- równoważny poziom ciśnienia akustycznego skorygowany charakterystyką częstotliwościową G, odniesiony do 8-godzinnego dobowego, określonego w kodeksie pracy, wymiaru czasu pracy przekracza wartość 86 dB
- szczytowy nieskorygowany poziom ciśnienia akustycznego przekracza wartość 135 dB.

W profilaktyce szkodliwego działania hałasu infradźwiękowego obowiązują takie same wymagania i zasady, jak w przypadku hałasu. Jednakże ochrona przed infradźwiękkami jest skomplikowana ze względu na znaczne długości fal infradźwiękowych (20 ÷ 170 m), dla których tradycyjne ściany, przegrody, ekran i pochłaniacze akustyczne są mało skuteczne. W niektórych przypadkach fale infradźwiękowe są wzmacniane na skutek rezonansu pomieszczeń, elementów konstrukcyjnych budynków lub całych obiektów.

Najlepszą ochronę przed szkodliwym działaniem infradźwięków stanowi ich zwalczanie u źródła powstawania, a więc w maszynach i urządzeniach.

Do innych rozwiązań zaliczyć można:
- stosowanie tłumików hałasu na wlotach i wylotach powietrza (lub gazu) maszyn przepływowych
- właściwe fundamentowanie (z wibroizolacją) maszyn i urządzeń
- usztywnianie konstrukcji ścian i budynków w przypadku ich rezonansów
- stosowanie dźwiękoszczelnych kabin o ciężkiej konstrukcji (murowanych) dla operatorów maszyn i urządzeń
- stosowanie aktywnych metod redukcji hałasu (związanych z aktywnym pochłanianiem i kompensacją dźwięku).

Hałas ultradźwiękowy

Ultradźwięki są coraz szerzej wykorzystywane w różnych dziedzinach techniki i medycyny, a zatem coraz powszechniejsza jest ich obecność w otaczającym nas środowisku, w tym również w środowisku pracy.

Ultradźwięki są drgami cząstek ośrodka sprężystego wokół położenia równowagi; fizyczny opis drgań ultradźwiękowych jest zatem taki sam, jak innych drgań akustycznych. Stąd wszystkie podstawowe pojęcia charakteryzujące drgania akustyczne i ich rozprzestrzenianie się w ośrodkach, takie jak m.in. prędkość drgań, częstotliwość, prędkość rozchodzenia się fali, długość fali, ciśnienie akustyczne, poziom ciśnienia akustycznego, widmo akustyczne itp., odnoszą się także do ultradźwięków.

Drgania akustyczne można podzielić na cztery zasadnicze grupy, przyjmując jako kryterium podziału ich częstotliwość:

- infradźwięki
 - drgania akustyczne o częstotliwościach w zakresie poniżej ok. 20 Hz
- dźwięki
 - drgania akustyczne o częstotliwościach z zakresu od ok. 16 Hz do ok. 16 kHz*
- ultradźwięki
 - drgania akustyczne o częstotliwościach w zakresie od ok. 16 kHz do 10⁰ Hz
- hiperdźwięki
 - drgania akustyczne o częstotliwościach w zakresie powyżej 10⁰ Hz.

Jedną z cech odróżniających ultradźwięki od infradźwięków i dźwięków jest więc ich wyższa częstotliwość, a w następstwie tego, ich krótkofalowość, gdyż długość fali akustycznej, w metrach, jest określona zależnością:

\[\lambda = \frac{c}{f} \]

gdzie:
- \(c \) - prędkość rozprzestrzeniania się fali akustycznej w danym ośrodku, m/s
- \(f \) - częstotliwość, Hz.

Prędkość rozchodzenia się fali w danym ośrodku, w określonych warunkach, jest wielkością stałą, dlatego też im wyższa jest częstotliwość fali, tym mniejsza jest jej długość.

Krótkofalowość ultradźwięków i związane z tym kierunkowe promieniowanie fal ultradźwiękowych przez źródła, a także możliwość wytwarzania dużych natężeń tego rodzaju fał znalazły szerokie zastosowania praktyczne, m.in. w hydrolokacji i telekomunikacji podwodnej, w badaniach nieniszczących materiałów (defektoskopia i betonoskopia ultradźwiękowa), diagnostyce i terapii medycznej, ultradźwiękowej obróbce materiałów (oczyszczanie, lutowanie, zgrzewanie, drażenie), przy wytwarzaniu emulsji, hydrozoli, aerozoli oraz w biologii, np. do nadźwiękowania bakterii i wirusów, a także nasion i roślin, przy czym w pierwszym przypadku celem jest działanie niszące, w drugim - pobudzające do wzrostu i rozwoju.

Stosowaniem technikom ultradźwiękowym, korzystnym z punktu widzenia realizacji i przebiegu założonych działań czy procesów, towarzyszy zazwyczaj emisja ultradźwięków do powietrza. Ultradźwięki
rozprzestrzeniające się w powietrzu stanowią podstawowe składowe tzw. hałasu ultradźwiękowego, który docierając do człowieka drogą powietrzną, może niekorzystnie wpływać na jego zdrowie.

W celu zdefiniowania pojęcia „hałas ultradźwiękowy” trzeba na wstępie wyjaśnić, że ultradźwięki można umownie podzielić na ultradźwięki wysokich częstotliwości i ultradźwięki niskich częstotliwości. Podział taki jest uzasadniony z wielu powodów, a między innymi:

- inne są sposoby wytwarzania ultradźwięków o niskich i wysokich częstotliwościach

- inne jest ich sposób rozprzestrzeniania się (fałe o niskich częstotliwościach ultradźwiękowych rozprzestrzeniają się mniej kierunkowo od źródła niż fałe o wysokich częstotliwościach ultradźwiękowych, które rozprzestrzeniają się kierunkowo, podobnie jak np. światło)

- inne jest tłumienie fal o różnych częstotliwościach przez ośrodek, w którym się rozchodzą (ze wzrostem częstotliwości tłumienie rośnie; np. w powietrzu tłumienie ultradźwięków o częstotliwościach wysokich jest tak duże, że praktycznie te ultradźwięki w powietrzu się nie rozchodzą)

- inne jest ich zastosowanie, ze względu na tak różne właściwości

- inne jest oddziaływanie fal ultradźwiękowych o niskich i wysokich częstotliwościach na organizmy żywe, w tym również na organizm ludzki.

Ultradźwięki o niskich częstotliwościach mogą się rozchodzić w różnych ośrodkach, w tym również w powietrzu. Te, które rozprzestrzeniają się w powietrzu wraz z dźwiękami o wysokich częstotliwościach słyszalnych, przyjęto nazywać hałasem ultradźwiękowym. Zatem hałas ultradźwiękowy to hałas, w którego widmie występują składowe o wysokich częstotliwościach słyszalnych i niskich ultradźwiękowych (od ok. 10 kHz do ok. 40 kHz).

Składowe hałasu ultradźwiękowego o częstotliwościach powyżej 16—20 kHz, ze względu na fizjologiczną budowę ucha ludzkiego, nie wywołują wrażeń słuchowych u człowieka (są dla człowieka niesłyszalne). Mimo to mogą powodować zagrożenie dla słuchu, oraz inne zagrożenia - pozasłuchowe.
Hałasem ultradźwiękowym przyjęto nazywać hałas, w którego widmie występują składowe o wysokich częstotliwościach słyszalnych i niskich ultradźwiękowych - od 10 do 40 kHz.

Ultradźwięki wchodzące w skład hałasu ultradźwiękowego mogą wnikać do organizmu przez narząd słuchu oraz przez całą powierzchnię ciała. Badania wpływu hałasu ultradźwiękowego na stan narządu słuchu są utrudnione, ponieważ w warunkach przemysłowych ultradźwiękom towarzyszy zazwyczaj hałas słyszalny i trudno jest określić, czy zmiany słuchu osób badanych występują na skutek oddziaływania tylko składowych słyszalnych lub tylko ultradźwiękowych, czy też na skutek jednoczesnego działania obu tych składników. Niemniej jednak, coraz szerzej rozpowszechniony jest pogląd, że na skutek zjawiska nieliniowego zachodzącego w samym uchu, pod wpływem działania ultradźwięków powstają składowe subharmoniczne o poziomach ciśnienia akustycznego często tego samego rzędu, co podstawowa składowa ultradźwiękowa. W następstwie tego zjawiska dochodzi do ubytków słuchu właściwie dla częstotliwości subharmonicznych ultradźwięków. Stwierdzono też ujemny wpływ ultradźwięków na narzędzia przedsionkowe w uchu wewnętrznym, objawiający się bólem i zawrotami głowy, zaburzeniami równowagi, nudnościami, sennością w ciągu dnia, nadmiernym zmęczeniem itp.

Badania oddziaływań pozasłuchowych wykazały, że ekspozycja zawodowa na hałas ultradźwiękowy o poziomach ponad 80 dB w zakresie wysokich częstotliwości słyszalnych i ponad 100 dB w zakresie niskich częstotliwości ultradźwiękowych, wywołuje zmiany o charakterze wegetatywno-naczyniowym.

Głównymi źródłami hałasu ultradźwiękowego w środowisku pracy są tzw. technologiczne urządzenia ultradźwiękowe niskich częstotliwości, w których ultradźwięki są wytwarzane celowo jako czynnik niezbędny do realizacji określonych procesów technologicznych. Do urządzeń tych zalicza się myjki ultradźwiękowe, zgrzewarki ultradźwiękowe, a także drążarki i lutownice ultradźwiękowe. Spośród wymienionych urządzeń najpowszechniej stosowane są myjki, gdyż proces oczyszczania ultradźwiękowego jest znacznie dokładniejszy i szybszy niż proces mycia tradycyjnego.

Hałas ultradźwiękowy mogą również emitować do otoczenia maszyny wysokoobrotowe, takie jak: obrabiarki do metali, niektóre maszyny włókiennicze, a także urządzenia pneumatyczne, w których główną przyczyną generacji hałasu ultradźwiękowego jest wypływ sprężonych gazów.

Według rozporządzenia ministra pracy i polityki społecznej w sprawie najwyższych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy hałas ultradźwiękowy na stanowiskach pracy jest charakteryzowany przez:

- równoważne poziomy ciśnienia akustycznego w pasmach tercjowych o częstotliwościach środkowych od 10 do 40 kHz obniżone do 8-godzinnego dobowego lub do przeciętnego tygodniowego, określonego w kodeksie pracy, wymiaru czasu pracy (wyjątkowo w przypadku oddziaływania hałasu ultradźwiękowego na organizm człowieka w sposób nierównomierny w poszczególnych dniach w tygodniu)

- maksymalne poziomy ciśnienia akustycznego w pasmach tercjowych o częstotliwościach środkowych od 10 do 50 kHz.

Tabela 2. Wartości dopuszczalne hałasu ultradźwiękowego (wartości NDN) dla ogółu pracowników

<table>
<thead>
<tr>
<th>Częstotliwość środkowa pasm tercjowych kHz</th>
<th>Równoważny poziom ciśnienia akustycznego odniesiony do 8-godzinnego dobowego lub do przeciętnego tygodniowego, określonego w kodeksie pracy, wymiaru czasu pracy dB</th>
<th>Maksymalny poziom ciśnienia akustycznego dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>10; 12,5; 16</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>25</td>
<td>105</td>
<td>125</td>
</tr>
</tbody>
</table>
Na stanowiskach pracy młodocianych i kobiet w ciąży obowiązują niższe wartości, podane poniżej.

Tabela - Wartości dopuszczalne hałasu ultradźwiękowego na stanowiskach pracy młodocianych

<table>
<thead>
<tr>
<th>Częstotliwość środkowa pasm tercjowych kHz</th>
<th>Równoważny poziom ciśnienia akustycznego odniesiony do 8-godzinnego dobowego lub do przeciętnego tygodniowego, określonego w kodeksie pracy, wymiaru czasu pracy dB</th>
<th>Maksymalny poziom ciśnienia akustycznego dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>10; 12,5; 16</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>85</td>
<td>110</td>
</tr>
<tr>
<td>25</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td>31,5; 40</td>
<td>105</td>
<td>130</td>
</tr>
</tbody>
</table>

Tabela - Wartości dopuszczalne hałasu ultradźwiękowego na stanowiskach pracy kobiet w ciąży

<table>
<thead>
<tr>
<th>Częstotliwość środkowa pasm tercjowych kHz</th>
<th>Równoważny poziom ciśnienia akustycznego odniesiony do 8-godzinnego dobowego lub do przeciętnego tygodniowego, określonego w kodeksie pracy, wymiaru czasu pracy dB</th>
<th>Maksymalny poziom ciśnienia akustycznego dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>10; 12,5; 16</td>
<td>77</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>87</td>
<td>110</td>
</tr>
<tr>
<td>25</td>
<td>102</td>
<td>125</td>
</tr>
<tr>
<td>31,5; 40</td>
<td>107</td>
<td>130</td>
</tr>
</tbody>
</table>

W profilaktyce szkodliwego działania hałasu ultradźwiękowego obowiązują takie same wymagania i zasady jak w przypadku hałasu. Przy narażeniu na ultradźwięki należy jednak zwiększyć częstotliwość badań lekarskich, tzn. wykonywać je co 2 lata. Ze względu na krótkofalowość ultradźwięków niskich częstotliwości rozchodzących się w powietrzu (długości fal od 3 mm do 2 cm) stosunkowo łatwo jest ograniczyć ich szkodliwe oddziaływanie na człowieka, np. przez hermetyzację i obudowanie źródeł, zdalne sterowanie procesem technologicznym, w którym zastosowano ultradźwięki, unikanie kontaktu z przetwornikiem ultradźwiękowym i cieczą, stosowanie środków ochrony indywidualnej, itp.
Najskuteczniejszym sposobem ograniczania zagrożenia hałasem ultradźwiękowym są działania producentów urządzeń, zmierzające do ograniczenia emisji źródeł tego rodzaju hałasu. W drugiej kolejności wśród działań ograniczających zagrożenie hałasem jest stosowanie ochron zbiorowych. Ze względu na specyfikę hałasu ultradźwiękowego, polegającą na występowaniu narażenia głównie bezpośrednio w sąsiedztwie źródeł hałasu, najbardziej skutecznymi ochronami będą osłony, obudowy oraz ekran akustyczne, ograniczające hałas na drodze propagacji.

W ostateczności, gdy nie jest możliwe ograniczenie hałasu innymi sposobami, skutecznym sposobem ograniczenia szkodliwego oddziaływania hałasu ultradźwiękowego na ludzi - szczególnie w przypadku małych odległości pomiędzy operatorem a urządzeniem - jest stosowanie ochronników słuchu oraz ochron osłaniających głowę (helmów lub przyłbic zaopatrzonych w przezroczyste ekran, np. z pleksiglasu).

Drgania

Drgania określane są w fizyce jako zjawiska, w których wielkości fizyczne charakterystyczne dla tych zjawisk są zmienne w funkcji czasu. Węszzym pojęciem są drgania akustyczne definiowane jako ruch cząstek ośrodka sprężystego względem położenia równowagi. Drgania akustyczne mogą zatem rozprzestrzeniać się w ośrodkach zarówno gazowych, ciekłych, jak i stałych. W tej klasie zjawisk niskoczęstotliwościowe drgania akustyczne rozprzestrzeniające się w ośrodkach stałych przyjęto nazywać drganiami mechanicznymi (wibracjami).

Drgania mechaniczne w wielu przypadkach są czynnikiem roboczym, celowo wprowadzanym przez konstruktorów do maszyn czy urządzeń jako niezbędny element do realizacji zadanych procesów technologicznych, np. w maszynach i urządzeniach do wirbroozdrabniania, wibroseparacji, wibracyjnego zagęszczania materiałów, oczyszczania i mielenia wibracyjnego, a także do kruszenia materiałów, wiercenia, drążenia i szlifowania. Drgania mechaniczne są też często bezcennym źródłem informacji, gdyż na podstawie analizy sygnału drganiowego można dokonać oceny stanu technicznego maszyny i jakości jej wykonania. Jednakże drgania mechaniczne mogą również powodować zakłócenia w prawidłowym działaniu maszyn i innych urządzeń, zmniejszać ich trwałość i niezawodność oraz niekorzystnie wpływać na konstrukcje i budowle. Przenoszone drogą bezpośredniego kontaktu z drgającym źródłem do organizmu człowieka mogą też wywierać ujemny wpływ na zdrowie pracowników i doprowadzać niejednokrotnie do trwałych zmian chorobowych. Zatem z punktu widzenia ochrony i bezpieczeństwa człowieka w środowisku pracy, drgania mechaniczne są szkodliwym czynnikiem fizycznym, który należy eliminować lub przynajmniej ograniczać.

Podział drgań mechanicznych i ich źródła w środowisku pracy

Drgania mechaniczne możemy podzielić w różnorak sposób w zależności od przyjętych kryteriów podziału. Mając na uwadze, że rodzaj niekorzystnych zmian w organizmie człowieka będących następstwem zawodowej ekspozycji na drgania oraz szybkość powstawania tych zmian zależą w istotnym stopniu od miejsca wnikania drgań do organizmu, drgania mechaniczne można podzielić na dwa typy:

- drgania o ogólnym działaniu na organizm człowieka, przenoszone przez nogi, miednicę, plecy lub boki (drgania ogólne)
- drgania działające na organizm człowieka przez kończyny górne (drgania miejscowe).

Podział drgań mechanicznych na drgania ogólne i miejscowe nie wyklucza oczywiście możliwości innych podziałów, ale jest podziałem najbardziej istotnym z punktu widzenia oceny narażenia człowieka na drgania w środowisku pracy. Od rodzaju drgań, na które eksponowany jest pracownik, zależy reakcja jego organizmu, a zatem inne są wartości dopuszczalne ustalone ze względu na ochronę zdrowia dla drgań o działaniu ogólnym, a inne dla drgań działających na organizm przez kończyny górne.

Uwzględniając wprowadzony podział drgań mechanicznych, źródła drgań w środowisku pracy można podzielić również na dwie grupy tj.:
źródła drgań o działaniu ogólnym
źródła drgań działających przez kończyny górne.

 Źródłami drgań o działaniu ogólnym są np.:

- podłogi, podesty, pomosty w halach produkcyjnych i innych pomieszczeniach, na których zlokalizowane są stanowiska pracy. Oczywiście pierwotnymi źródłami drgań są w tym przypadku eksploatowane w pomieszczeniach lub poza nimi maszyny oraz urządzenia stacjonarne, przenośne lub przewoźne, które wprawiają w drgania podłoże, na którym stoi operator. Przyczyną drgań podłoża może też być ruch uliczny czy kolejowy
- platformy drgające
- siedziska i podłogi środków transportu (samochodów, ciągników, autobusów, tramwajów, trolejbusów oraz pojazdów kolejowych, statków, samolotów itp.)
- siedziska i podłogi maszyn budowlanych (np. do robót ziemnych, fundamentowania, zagęszczania gruntów).

 Źródłami drgań działających na organizm człowieka przez kończyny górne są głównie:

- ręczne narzędzia uderzeniowe o napędzie pneumatycznym, hydraulicznym lub elektrycznym (młotki pneumatyczne, ubijaki mas formierskich i betonu, nitowniki, wiertarki udarowe, klucze udarowe itp.)
- ręczne narzędzia obrotowe o napędzie elektrycznym lub spalinowym (wiertarki, szlifierki, piły łańcuchowe itp.)
- dźwignie sterujące maszyn i pojazdów obsługiwane rękami
- źródła technologiczne (np. obrabiane elementy trzymane w dłoniach lub prowadzone ręką przy procesach szlifowania, gładzenia, polerowania itp.).

Skutki oddziaływania drgań mechanicznych na organizm człowieka

Drgania mechaniczne przenoszone z układów drgających do organizmu człowieka mogą negatywnie oddziaływać bezpośrednio na poszczególne tkanki i naczynia krwionośne, bądź też mogą spowodować wzbudzenie do drgań całego ciała lub jego części, a nawet struktur komórkowych. Długotrwałe narażenie człowieka na drgania może zatem wywołać, jak już wspomniano, szereg zaburzeń w organizmie, doprowadzając w konsekwencji do trwałych, nieodwracalnych zmian chorobowych, przy czym rodzaj tych zmian zależy od rodzaju drgań, na które eksponowany jest człowiek (ogólne czy miejscowe).

Narażenie na drgania mechaniczne przenoszone do organizmu przez kończyny górne powoduje głównie zmiany chorobowe w układach:

- krążenia krwi (naczyniowym)
Przeprowadzone na dużych grupach pracowniczych badania epidemiologiczne wykazały ścisły związek przyczynowo-między zmianami chorobowymi stwierdzanymi w wymienionych układach a występowaniem mechanicznych drgań miejscowych w środowisku pracy. Stąd zespół tych zmian, zwany zespołem wibracyjnym, został uznany w wielu krajach, w tym również w Polsce, za chorobę zawodową. Według danych zebranych przez Instytut Medycyny Pracy w Łodzi, zespół wibracyjny w 2001 r. stanowił w Polsce 3,4% wszystkich stwierdzonych chorób zawodowych i znajdował się na liście tych chorób na 7 miejscu po chorobach narządu głosu, zawodowym uszkodzeniu słuchu, pylicach płuc, chorobach zakaźnych i inwazyjnych, chorobach skóry oraz przewlekłych chorobach oskrzeli.

Z analizy struktury i zapadalności na choroby zawodowe w Polsce w ostatnich pięciu latach wynika, że liczba orzekanych co roku nowych przypadków zespołu wibracyjnego liczy się w setkach, a najczęściej rejestrowaną jego postacią jest postać naczyniowa, charakteryzująca się napadowymi zaburzeniami krążenia krwi w palcach rąk. Występujące wówczas napadowe skurcze naczyń krwionośnych objawiają się blednięciem opuszki jednego lub więcej palców i stąd pochodzi jedno z potocznich określeń tej postaci zespołu wibracyjnego jako "choroba białych palców".

Rejestrowane nieco rzadziej postacie zespołu wibracyjnego to postać nerwowa i postać kostnoźstawowa, przy czym mogą wystąpić też inne postacie mieszane.

Zmiany w układzie nerwowym powstałe na skutek działania drgań miejscowych to głównie zaburzenia czucia dotyku, wibracji, temperatury, a także dolegliwości w postaci drętwienia czy mrowienia palców i rąk. Jeżeli narażenie na drgania jest kontynuowane, zmiany pogłębiają się, prowadząc do obniżenia zdolności do pracy i innych czynności życiowych.

Zmiany w układzie kostnoźstawowym ręki powstają głównie na skutek drgań miejscowych o częstotliwościach mniejszych od 30 Hz. Obserwuje się m.in. zniekształcenia szpar stawowych, zwapnienia torebków stawowych, zmiany okostnej, zmiany w utkaniu kostnym.

Zespół wibracyjny stanowi istotny problem nie tylko w Polsce, ale też we wszystkich krajach Europy, a także w USA i Japonii.

Na drgania mechaniczne działające na organizm człowieka przez kończyny górne narażeni są głównie operatorzy wszelkiego rodzaju narzędzi wibracyjnych stosowanych powszechnie w przemyśle maszynowym, hutniczym, stoczniowym, przetwórczym, a także w leśnictwie, rolnictwie, kamieniarstwie, górnictwie i budownictwie. Zatem obszar potencjalnego zagrożenia pracowników tym rodzajem drgań jest bardzo rozległy.

Negatywne skutki zawodowej ekspozycji na drgania o działaniu ogólnym dotyczą zwłaszcza:

- układu kostnego
- narządów wewnętrznych człowieka.

W układzie kostnym chorobowe zmiany powstają głównie w odcinku lędźwiowym kręgoślupa, rzadziej w odcinku szyjnym. Zespół bólowy kręgoślupa będący następstwem zmian chorobowych, a występujący u osób narażonych zawodowo na drgania ogólne został uznany w niektórych krajach (np. w Belgii i w Niemczech) za chorobę zawodową, podobnie jak zespół wibracyjny będący następstwem działania drgań miejscowych.

Zaburzenia w czynnościach narządów wewnętrznych pojawiające się na skutek działania drgań ogólnych, są głównie wynikiem pobudzenia poszczególnych narządów do drgań rezonansowych (częstotliwości drgań własnych większości narządów zawierają się w zakresie 2 ÷ 18 Hz). Najbardziej udokumentowane są niekorzystne zmiany w czynnościach narządów układu pokarmowego, w tym głównie żołądka i przełyku, ale badania dużych grup narażonych zawodowo na drgania ogólne wskazują, że zaburzenia występują również, m.in. w narządzach przedsionkowo-ślimakowym, narządach układu rozrodczego kobiet, narządach klatki piersiowej, narządach jamy nosowo-gardłowej.

Na drgania mechaniczne o ogólnym działaniu na organizm są narażeni przede wszystkim kierowcy,
motorniczowie, maszyniści, operatorzy maszyn budowlanych i drogowych. W tych przypadkach drgań są przenoszone do organizmu z siedzisk pojazdów przez miednicę, plecy i boki. Należy jednak pamiętać, że zawodowa ekspozycja na drgań ogólne często dotyczy też pracowników obserwujących w pozycji stojącej maszyny i urządzenia stacjonarne eksploatowane w różnych pomieszczeniach pracy. W takim przypadku drgań przenikają do organizmu pracownika przez jego stopy z drgającego podłoża, na którym usytuowane jest stanowisko pracy, a skutki działania tych drgań są podobne jak drgań transmitowanych z siedzisk.

Opisanym wyżej skutkom biologicznym oddziaływania drgań miejscowych i ogólnych na organizm człowieka, towarzyszą zazwyczaj tzw. skutki funkcjonalne. Zalicza się do nich m.in.:

- zwiększenie czasu reakcji ruchowej
- zwiększenie czasu reakcji wzrokowej
- zakłócenia w koordynacji ruchów
- nadmiernie zmęczenie
- bezsenność
- rozdrażnienie
- osłabienie pamięci.

Niekorzystne zmiany funkcjonalne prowadzą do obniżenia efektywności i jakości wykonywanej pracy, a czasami w ogóle ją uniemożliwiają.

Wg danych statystycznych z ostatnich lat liczba osób zatrudnionych w Polsce w warunkach narażenia na drgań wynosi ok. 100 tys. W warunkach zagrożenia drganiami, tj. przy przekroczenych wartościach dopuszczalnych, ustalonych ze względu na ochronę zdrowia, pracuje ok. 40 tys. osób.

Uwzględniając powszechność występowania drgań mechanicznych w środowisku pracy oraz wynikające z tego skutki, konieczne są pomiary tego czynnika na stanowiskach pracy, w celu oceny zawodowego ryzyka utraty zdrowia wynikającego z ekspozycji na drgań oraz podejmowanie działań ograniczających występujące ryzyko.

Kryteria oceny ekspozycji na drgań - wartości dopuszczalne

Uwzględniając że określone czynniki fizyczne, do których zalicza się też drgań mechaniczne, są czynnikami potencjalnie szkodliwymi w środowisku pracy, ustalono najwyższe dopuszczalne natężenia (NDN) tych czynników, tj. takie wartości, przy których oddziaływania danego czynnika na pracownika w ciągu 8 - godzinnego dobowego i przeciętnego tygodniowego wymiaru czasu pracy, przez okres jego aktywności zawodowej, nie powinno spowodować ujemnych zmian w jego stanie zdrowia oraz w stanie zdrowia jego przyszłych pokoleń.

Najwyższe dopuszczalne natężenia (NDN) drgań mechanicznych, zarówno działających na człowieka przez kończyny górne jak też o ogólnym działaniu, są wyrażone jako dopuszczalne wartości sum wektorowych ważonych częstotliwościami przyspieszeń trzech składowych wektorowych x, y, z.

- dla drgań działających na organizm człowieka przez kończyny górne wartość sumy wektorowej skutecznych, ważonych częstotliwościami przyspieszeń drgań wyznaczonych dla trzech składowych kierunkowych x, y, z nie powinna przekraczać 2,8 m/s², przy 8-godzinnym działaniu drgań na organizm człowieka; dla ekspozycji trwających 30 minut i krócej maksymalna dopuszczalna wartość sumy wektorowej skutecznych, ważonych częstotliwościami przyspieszeń drgań wyznaczonych dla trzech składowych kierunkowych x, y, z nie powinna przekraczać 11,2 m/s².

- dla drgań o ogólnym działaniu na organizm człowieka wartość sumy wektorowej skutecznych, ważonych częstotliwościami przyspieszeń drgań wyznaczonych dla trzech składowych kierunkowych x, y, z nie powinna przekraczać.
0,8 m/s², przy 8-godzinnym działaniu drgań na organizm człowieka; dla ekspozycji trwających 30 minuty i krótszej maksymalna dopuszczalna wartość sumy wektorowej skutecznych, ważonych częstotliwościowo przyspieszeń drgań wyznaczonych dla trzech składowych kierunkowych x, y i z nie powinna przekraczać 3,2 m/s².

Podane wartości NDN drgań mechanicznych stosuje się, jeżeli inne szczegółowe przepisy nie określają wartości niższych. W przypadku zawodowego narażenia na drgania, wartości niższe od NDN obowiązują przy zatrudnianiu kobiet w ciąży i młodocianych.

Nie wolno zatrudniać kobiet w ciąży w warunkach narażenia na drgania działające na organizm przez kończyny górne, których:

- wartość sumy wektorowej skutecznych ważonych częstotliwościowo przyspieszeń drgań wyznaczonych dla trzech składowych kierunkowych x, y i z przy 8-godzinnym działaniu drgań na organizm, przekracza 1 m/s²,
- maksymalna wartość sumy wektorowej skutecznych ważonych częstotliwościowo przyspieszeń drgań wyznaczonych dla trzech składowych kierunkowych x, y i z, dla ekspozycji trwających 30 minut i krótszych, przekracza 4 m/s².

Nie wolno też zatrudniać kobiet w ciąży przy żadnej pracy w warunkach narażenia na drgania o ogólnym działaniu na organizm człowieka.

Wzbronione jest zatrudnianie młodocianych w warunkach narażenia na drgania działające na organizm przez kończyny górne, których:

- wartość sumy wektorowej skutecznych ważonych częstotliwościowo przyspieszeń drgań wyznaczonych dla trzech składowych kierunkowych x, y i z przy 8-godzinnym działaniu drgań na organizm, przekracza 0,25 m/s²,
- maksymalna wartość sumy wektorowej skutecznych ważonych częstotliwościowo przyspieszeń drgań wyznaczonych dla trzech składowych kierunkowych x, y i z, dla ekspozycji trwających 30 minut i krótszych, przekracza 1 m/s².

Wzbronione jest zatrudnianie młodocianych w warunkach narażenia na drgania o ogólnym oddziaływaniu na organizm człowieka, których:

- wartość sumy wektorowej skutecznych ważonych częstotliwościowo przyspieszeń drgań wyznaczonych dla trzech składowych kierunkowych x, y i z przy 8-godzinnym działaniu drgań na organizm, przekracza 0,25 m/s²,
- maksymalna wartość sumy wektorowej skutecznych ważonych częstotliwościowo przyspieszeń drgań wyznaczonych dla trzech składowych kierunkowych x, y i z dla ekspozycji trwających 30 minut i krótszych, przekracza 4 m/s².

Metody ograniczania zagrożeń drganiami mechanicznymi

Minimalizowanie zagrożeń powodowanych drganiami mechanicznymi może być realizowane różnymi metodami. Najogólnie metody te można podzielić na metody techniczne i metody organizacyjno-administracyjne.

W grupie metod technicznych można rozróżnić:

- minimalizowanie drgań u źródła ich powstawania (zmniejszanie wibroaktywności źródeł)
- minimalizowanie drgań na drodze ich propagacji
- automatyzację procesów technologicznych i zdalne sterowanie źródłami drgań.

Zmniejszenie wibroaktywności źródeł można osiągnąć ingerując w ich konstrukcję (minimalizacja luzów, poprawa wyrównowania elementów wirujących, eliminacja wzajemnych uderzeń elementów współpracujących i ich właściwy montaż, właściwe mocowanie maszyn do podłoża - fundamentowanie itp.).
Tłumienie drgań na drodze ich propagacji uzyskuje się np. przez dylatację (separację) fundamentów maszyn i urządzeń od otoczenia, stosowanie materiałów wibroizolacyjnych w różnej postaci (maty, podkładki, specjalne wibroizolatory), a także - w odniesieniu do drgań miejscowych - przez stosowanie środków ochrony indywidualnej w postaci rękawic antywibracyjnych. Należy zaznaczyć, że stosowanie rękawic antywibracyjnych nie tylko ogranicza drgania transmitowane z narzędzi do rąk operatora, ale też zabezpiecza ręce przed niską temperaturą i wilgocią, które to czynniki potęgują skutki oddziaływania drgań, przyspieszając rozwój zespołu wibracyjnego.

Do technicznych metod ograniczania zagrożenia powodowanego drganiami mechanicznymi zalicza się także, jak już zaznaczono, automatyzację procesów technologicznych i zdalne sterowanie źródłami drgań. Metody te pozwalają oddalić pracowników z obszarów zagrożonych drganiami mechanicznymi, zmniejszając zatem ryzyko utraty zdrowia na skutek oddziaływania drgań.

Ograniczenie zagrożeń drganiami mechanicznymi przez stosowanie metod organizacyjno-administracyjnych to głównie:

- skracanie czasu narażenia na drgania w ciągu zmiany roboczej
- wydzielenie specjalnych pomieszczeń do odpoczynku
- przesuwanie do pracy na innych stanowiskach osób szczególnie wrażliwych na działanie drgań
- szkolenia pracowników w celu uświadomienia ich o występujących zagrożenia powodowanych ekspozycją na drgania oraz w zakresie możliwie bezpiecznej obsługi maszyn i narzędzi.

Metody organizacyjno-administracyjne powinny być stosowane zwłaszcza tam, gdzie brak jest możliwości ograniczenia zagrożeń metodami technicznymi.

W minimalizacji zagrożeń drganiami mechanicznymi niebagatelną rolę odgrywa także profilaktyka medyczna. Ma ona na celu eliminowanie przy zatrudnianiu na stanowiska operatorów maszyn i narzędzi drgających osób, których stan czynnościowy organizmu odbiega od normy, gdyż odchylenia te pod wpływem drgań mogą ulegać pogłębieniu. W stosunku do osób już pracujących w warunkach narażenia na drgania, powinny być prowadzone badania okresowe w celu możliwie wcześniejszego wykrywania ewentualnych zmian chorobowych i przesuwania tych pracowników na stanowiska pracy bez narażenia na drgania. Zakres i częstotliwość wstępnych, okresowych i kontrolnych badań lekarskich pracowników narażonych w miejscu pracy na działanie różnych czynników, w tym także drgań mechanicznych, określa rozporządzenie ministra zdrowia i opieki społecznej z dnia 30 maja 1996 r. [16] w sprawie przeprowadzania badań lekarskich pracowników, zakresu profilaktycznej opieki zdrowotnej nad pracownikami oraz orzeczeń lekarskich wydawanych do celów przewidzianych w Kodeksie pracy.

W praktyce w walce z zagrożeniami powodowanymi drganiami mechanicznymi najlepsze rezultaty daje stosowanie kilku wymienionych metod jednocześnie.

Klasyfikacja czynników mechanicznych

Niebezpieczne czynniki mechaniczne można podzielić na następujące grupy:

- przemieszczające się maszyny oraz transportowane przedmioty
- elementy ruchome
- elementy ostre, wystające, chropowate
- elementy spadające
- płyty pod ciśnieniem
- śliskie, nierówne powierzchnie
- ograniczone przestrzenie (dojścia, przejścia, dostępne)
- położenie stanowiska pracy w odniesieniu do podłoża (praca na wysokości oraz w zagłębiachach)
- inne, np. powierzchnie gorące lub zimne, źrące substancje, żywe zwierzęta
Rodzaje zagrożeń mechanicznych

Zagrożenia mechaniczne to wszelkie oddziaływania na człowieka czynników fizycznych, które mogą być przyczyną urazów powodowanych mechanicznym działaniem części maszyn, narzędzi, przedmiotów obrabianych lub wyrzucanych materiałów stałych bądź płynnych. Do podstawowych zagrożeń mechanicznych zalicza się zagrożenie:

- zgniatakiem (gnieceniem, zmiażdżeniem)
- ścinaniem
- cięciem (obcięciem, odcięciem)
- wplątaniem, wciągnięciem lub pochwyceniem (zmiażdżeniem, złamaniem)
- uderzeniem (obtarciem, uderzeniem, pęknięciem, złamaniem)
- kłuciem (przekłuciem, przebiciem)
- ścieraniem (starcie lub obtarciem)
- wytryskiem cieczy pod wysokim ciśnieniem (uderzeniem, poparzeniem)

Przykłady ilustrujące zagrożenia mechaniczne przedstawiono w tablicy.
<table>
<thead>
<tr>
<th>Schemat</th>
<th>Zagravenia mechaniczne</th>
<th>Parametry, które należy uwzględniać</th>
<th>Przykłady (nie wszystkie)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POCHWYCENIEM</td>
<td>moment obrotowy</td>
<td>- sprzęgło</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- średnica</td>
<td>- wkręcane</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- bezwładność (masa i prędkość)</td>
<td>- tarcza</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- kształt, stan powierzchni</td>
<td>- wałek</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- dostępność</td>
<td>- itp.</td>
<td></td>
</tr>
<tr>
<td>UDZERZENIEM ZGNIĘCENIEM</td>
<td>moment obrotowy</td>
<td>- kolo pasowe</td>
<td></td>
</tr>
<tr>
<td>POCHWYCENIEM</td>
<td>średnica</td>
<td>- kolo zamachowe</td>
<td></td>
</tr>
<tr>
<td>ODCIĘCIEM ŚCINANIEIEM</td>
<td>bezwładność (masa i prędkość)</td>
<td>- klin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>kształt, wymiary otworów, występowanie</td>
<td>- srebra ustalająca</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- odległości pomiędzy częścią obrotową a częścią nieruchomą</td>
<td>- wentylator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- dostępność</td>
<td>- ramię mieszadła</td>
<td>- itp.</td>
</tr>
<tr>
<td>PRZECIĘCIEM WYRZUTEM</td>
<td>prędkość</td>
<td>- wytaczadło</td>
<td></td>
</tr>
<tr>
<td>WCIĄGNIĘCIEM ODCIĘCIEM</td>
<td>wymiary</td>
<td>- frez</td>
<td></td>
</tr>
<tr>
<td>WYRZUTEM</td>
<td>kształt, stan powierzchni</td>
<td>- piła tarczowa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mocowanie elementów obrotowych</td>
<td>- użebienie dzielone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- dostępność</td>
<td>- tarcza do przeryzowania</td>
<td>- itp.</td>
</tr>
<tr>
<td></td>
<td>- wytwarzalność mechaniczna</td>
<td>- itp.</td>
<td></td>
</tr>
<tr>
<td>WCIĄGNIĘCIEM ŚCINANIEIEM</td>
<td>moment obrotowy</td>
<td>- przecinka</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bezwładność (masa i prędkość)</td>
<td>- szlifierka stacjonarna</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- materiał (spójność, jednorodność)</td>
<td>- szlifierka przenośna</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- nierównoważenie</td>
<td>- itp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- odległości pomiędzy częścią obracającą się a częścią stałą</td>
<td>- itp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- dostępność</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDZERZENIEM WCIĄGNIĘCIEM</td>
<td>moment obrotowy</td>
<td>- wiórkka</td>
<td></td>
</tr>
<tr>
<td>ODCIĘCIEM</td>
<td>bezwładność (masa i prędkość)</td>
<td>- wyżynarka</td>
<td></td>
</tr>
<tr>
<td></td>
<td>wymiary</td>
<td>- itp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- luz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZGNIĘCENIEM WCIĄGNIĘCIEM</td>
<td>moment obrotowy</td>
<td>- ugiatarka</td>
<td></td>
</tr>
<tr>
<td>OPARZENIEM WYRZUTEM</td>
<td>bezwładność (masa i prędkość)</td>
<td>- mieszarka</td>
<td></td>
</tr>
<tr>
<td></td>
<td>wymiary</td>
<td>- rozdrabnicač</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- luz</td>
<td>- itp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- dostępność</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZGNIĘCENIEM UDCIĘCIEM</td>
<td>bezwładność (masa i prędkość)</td>
<td>- przekładnia żebata</td>
<td></td>
</tr>
<tr>
<td>UDZERZENIEM</td>
<td>- sila</td>
<td>- żebatka</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- odstęp min/max</td>
<td>- walarka</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- cofnięcie elementów</td>
<td>- przenośnik walkowy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- obrabiarki do drewna</td>
<td>- maszyna drukarska</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- dostępność</td>
<td>- wałek ugiatający</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- wałek klejący</td>
<td>- itp.</td>
</tr>
<tr>
<td>ŚCIANANIE ODCIĘCIEM</td>
<td>bezwładność (masa i prędkość)</td>
<td>- itp.</td>
<td></td>
</tr>
<tr>
<td>WCIĄGNIĘCIEM ZGNIĘCENIEM</td>
<td>sila</td>
<td>- prasa</td>
<td></td>
</tr>
<tr>
<td>UDZERZENIEM</td>
<td>- odstęp min/max</td>
<td>- formierka</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ccięcie elementów</td>
<td>- urządzenie posuwowe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- obrabiarki do drewna</td>
<td>- itp.</td>
<td></td>
</tr>
<tr>
<td>PRZECIĘCIEM ODCIĘCIEM</td>
<td>prędkość cięcia</td>
<td>- neżyce mechaniczne</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- prędkość podlewania</td>
<td>- niedoprzączka</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- kształt elementu obrabianego</td>
<td>- urządzenie posuwowe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- itp.</td>
<td></td>
</tr>
</tbody>
</table>
| PRZEKLUCIEM WGNIECENIEM | - siła
- częstotliwość
- odstęp minimalny
- odstęp maksymalny | - maszyna do wbijania gwoździ
- zszywarka
- dziurarka
- maszyna do szycia
- itp. |
|------------------------|---------------------------------|
| POCHWYCENIEM OPARZENIEM PRZEKLUCIEM | - siła
- prędkość
- kształt, stan powierzchni | - szlifierka taśmowa
- spinka na pasku
- itp. |
| POCHWYCENIEM WYRWANIEM UDERZENIEM | - moment obrotowy
- bezwładność (masa i prędkość)
- średnica
- kształt, stan powierzchni
- dostępność | - wrzeciono
- uchwyt
- wiertło
- trzpień
- przenośnik śrubowy
- itp. |
| UDERZENIEM ZGNIĘCENIEM WCIĄGNIĘCIEM | - ułożenie względne
- częstotliwość ruchu
- siła
- prędkość
- kształt | - wał krzywkowy + rolka
- mimośrod
- itp. |
| ZGNIĘCENIEM POCHWYCENIEM WCIĄGNIĘCIEM WYRWANIEM ODCIĘCIEM UDERZENIEM | - moment obrotowy
- napięcie
- wymiary
- prędkość
- kształt | - przenośnik cięgnowy,
- zgarniakowy
- koło z paskiem
- przenośnik taśmowy
- koło z łańcuchem
- itp. |
| UDERZENIEM ŚCINANIEM ZGNIĘCENIEM WCIĄGNIĘCIEM | - częstotliwość
- siła
- wymiary
- luz | - korbowód – korba
- ramię podające
- itp. |
| UDERZENIEM WYRZUTEM | - materiał (spójność, jednorodność)
- niewyważenie
- ciśnienie
- bezwładność (masa i prędkość) | - ściernica
- uzębienie dzielone
- piła tarczowa
- itp. |
| OPARZENIEM WCIĄGNIĘCIEM UDERZENIEM WYRZUTEM PRZEKLUCIEM | - bezwładność (masa i prędkość)
- objętość
- temperatura
- materiał
- ciśnienie | - pistolet mocujący
- ściernica
- przewód hydrauliczny/ pneumatyczny
- maszyna do wbijania gwoździ
- itp. |
Identyfikacja zagrożeń mechanicznych

Identyfikacji zagrożeń mechanicznych wraz ze stwarzanymi sytuacjami zagrożenia dokonujemy na podstawie analizy czynności i sposobów ich wykonywania w aspekcie czasu przebywania w strefie niebezpiecznej i możliwości kontaktu z czynnikami stwarzającymi zagrożenia mechaniczne. Podczas normalnego (ustalonego przez projektanta i lub producenta) funkcjonowania środków pracy w określonych warunkach użytkowania oraz analizy możliwości powstania zakłóceń w takim ich funkcjonowaniu wraz z ich potencjalnymi następствami. W tym celu analizujemy:

- ogólne aspekty charakteryzujące stanowisko pracy takie jak np. lokalizacja, wyposażenie i jego rozmieszczenie itp.,
- rodzaje operacji i czynności wykonywanych przez pracownika(ów) wraz ze sposobami i czasem ich wykonywania na stanowisku pracy,
- warunki otoczenia mające wpływ na powstawanie zagrożeń na analizowanym stanowisku pracy,
- informacje o zaistniałych wypadkach oraz zdarzeniach potencjalnie wypadkowych,
- identyfikujemy potencjalne źródło możliwego urazu lub innego pogorszenia stanu zdrowia
- warunki powstawania sytuacji zagrożenia,

Analizując ogólne aspekty charakteryzujące stanowisko pracy należy określić lokalizację stanowiska pracy w zakładzie np. poprzez podanie odległości od stałych elementów budynku, zidentyfikować wszystkie maszyny i urządzenia, narzędzia ręczne, instalacje i inny sprzęt stosowany przez pracownika podczas wykonywania pracy, uwzględniając ich, rozmieszczenie na stanowisku pracy, odległości między nimi, pola do składowania używanych materiałów i uzyskiwanych wyrobów a także stosowanych środków pomocniczych np., smarujących, chłodzących, myjących.

Identyfikację operacji i czynności wraz ze sposobami jej wykonywania przez pracownika na stanowisku pracy należy przeprowadzić na podstawie kart technologicznych i instrukcji bhp a następnie skonfrontować z warunkami rzeczywistymi dokonując „fotografii” dnia lub innego czasookresu pracy pracownika np. podając: co wykonuje pracownik, w jaki sposób, przy zastosowaniu jakich maszyn i urządzeń lub sprzętu dodatkowego itp.. Ponadto należy ustalić czas wykonywania każdej czynności np. przy pomocy stopera i ich powtarzalność.

Analiza warunków otoczenia mających wpływ na zwiększenie ryzyka zawodowego związku z istniejącymi zagrożeniami mechanicznymi np. niewłaściwe oświetlenie, zapylenie itp., i/lub na powstawanie zagrożeń na analizowanym stanowisku pracy, np. poślizgnięciem wskutek rozszerzenia instalacji centralnego ogrzewania, uderzeniem przez elementy odlatujące z sąsiedniego stanowiska itp.

Informacje o zaistniałych wypadkach oraz zdarzeniach potencjalnie wypadkowych na danym stanowisku pracy lub na podobnych stanowiskach w zakładzie pracy lub innych zakładach realizujących takie same procesy technologiczne analizujemy w aspekcie przyczyn i okoliczności ich zaistnienia.

Powyższe działania pozwalają zidentyfikować warunki i sytuacje możliwe do powstania mechanicznych sytuacji zagrożenia na danym punkcie w zakresie technologicznym i potencjalnych jego zakłóceń czyli sytuacji zagrożenia mechanicznego.

Do głównych parametrów wpływających na powstawanie tych sytuacji należy zaliczyć:

- usytuowanie strefy zagrożenia w odniesieniu do strefy pracy pracownika;
- rodzaj, kształt, gładkość powierzchni elementów, z którymi może stykać się pracownik (elementy tnące, ostre wystające krawędzie itp.);
- położenie względem siebie elementów mogących podczas poruszania się tworzyć strefy niebezpieczne (np. przekładnie łańcuchowe, pasowe, zębate).
- energię wzajemnego oddziaływania danego czynnika i pracownika;
- energię kinetyczną części maszyn;
- energię potencjalną części, które poruszają się pod wpływem siły ciężkości, elementów sprężystych lub nad- i podciśnienia płynów;

Zapobieganie zagrożeniom powodowanym czynnikami mechanicznymi
Zagrożenia czynnikami mechanicznymi, podobnie jak innymi niebezpiecznymi czynnikami, należy eliminować lub ograniczać poprzez:

- eliminowanie czynników lub ograniczanie ich aktywności
- ograniczanie ekspozycji osób na czynniki, których nie udało się wyeliminować

Zagrożenia mogą być powodowane przez czynniki niebezpieczne występujące podczas normalnego (ustalonego przez projektanta) funkcjonowania maszyny lub innego przedmiotu pracy oraz przez czynniki powstające wskutek zakłóceń. Dlatego też przedsięwzięcia podejmowane w celu wyeliminowania lub ograniczenia aktywności niebezpiecznych czynników mechanicznych powinny dotyczyć:

- normalnego funkcjonowania maszyny lub innego przedmiotu pracy
- sytuacji anormałnych (dających się przewidzieć).

Zapobieganie anormalnemu funkcjonowaniu lub awariom maszyn pośrednio eliminuje lub zmniejsza zagrożenia, gdyż nie powoduje powstawania czynników zwykle towarzyszących takim stanom oraz zmniejsza częstotliwość interwencji związanych z usuwaniem przyczyn tych stanów, a więc także zmniejsza narażenie na towarzyszące im z reguły niebezpieczne czynniki mechaniczne.

Eliminowanie lub ograniczanie czynników mechanicznych

Eliminowanie czynników mechanicznych lub ograniczanie ich aktywności, mogącej stwarzać zagrożenia podczas normalnego (ustalonego przez projektanta) funkcjonowania maszyn lub przedmiotów pracy, powinno następować w drodze rozwiązań konstrukcyjnych.

Rozwiązania konstrukcyjne ograniczające aktywność czynników mechanicznych sprowadzają się w głównej mierze do wyeliminowania czynnika lub utrudniania możliwości powstawania sytuacji zagrożenia poprzez dobór kształtów, wymiarów, gładkości powierzchni, parametrów ruchu elementów oraz stworzenia możliwości uwolnienia się człowieka z sytuacji zagrożenia bądź zmniejszenia skutków takich sytuacji.

Uderzenia, powodowane np. przez ruchome osłony, istotnie łagodzi ograniczenie do bezpiecznego. Maksymalne wartości elementów stykających się z częściami ciała człowieka w tablicy, a przykłady tych elementów przedstawiono na rysunku poniżej.

<table>
<thead>
<tr>
<th>PARAMETR</th>
<th>Wartości maksymalne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wariant 1</td>
</tr>
<tr>
<td>Maksymalna siła wywierana na części ciała</td>
<td>75 N</td>
</tr>
<tr>
<td>Maksymalna energia kinetyczna części ruchomej</td>
<td>4 J</td>
</tr>
<tr>
<td>Maksymalny nacisk zetknięcia</td>
<td>50 N/cm²</td>
</tr>
</tbody>
</table>

Tabela 3. Maksymalne wartości parametrów elementów stykających się z częściami ciała człowieka
Rozwiązania konstrukcyjne powinny także zapobiegać powstawaniu sytuacji anormalnych powodujących zakłócenia lub wynikających z zakłóceń w funkcjonowaniu maszyny lub innego przedmiotu pracy spowodowanych np. niezamierzonym uruchomieniem, nadmiernym wzrostem obciążenia, ciśnienia, obrotów lub włączeniem koliżyjnych ruchów. Bezpośrednim następstwem tych zakłóceń mogą być pęknięcia, złamania, nadmierne odkształcenia, obłuzowania i inne naruszenia konstrukcji elementów i zespołów maszyn lub innych środków pracy doprowadzające do ich awarii. Następstwa te mogą być przyczyną powstawania często trudnych do zidentyfikowania czynników mechanicznych zagrażających operatorowi i otoczeniu, np. przeciążenie żurawia może doprowadzić do zerwania liny lub złamania wysięgnika bądź nawet wywrócenia całego żurawia.

Naruszeniom konstrukcji lub innym przyczynom anormalnego funkcjonowania przedmiotów pracy należy zapobiegać przede wszystkim przez:

- nieprzekraczanie dopuszczalnych wartości naprężeń, odkształceń i innych parametrów decydujących o wytrzymałości danego elementu; należy dobierać wytrzymałość elementów (z zachowaniem współczynników bezpieczeństwa) do charakteru i wartości występujących obciążeń z uwzględnieniem wpływu warunków eksploatacji. Dla elementów decydujących o bezpieczeństwie, takich jak np. zawiesia, liny oraz kabiny i inne konstrukcje chroniące operatora w razie przewrócenia się maszyny lub przed spadającymi przedmiotami, obliczenia wytrzymałościowe powinny być obowiązkowo poparte wynikami badań

- stosowanie urządzeń zabezpieczających przed naruszeniem normalnych warunków funkcjonowania maszyn lub innych przedmiotów pracy, takich jak zawory bezpieczeństwa, ograniczniki udźwigu, ograniczniki zakresu jazdy lub podnoszenia itp.

Ograniczenie narażenia człowieka na nie wyeliminowane niebezpieczne czynniki mechaniczne

Narażenie (ekspozycję) na nie wyeliminowane niebezpieczne czynniki mechaniczne należy ograniczać przez:

- eliminowanie lub ograniczanie związanych z procesem pracy ingerencji człowieka w strefach zagrożenia (niebezpiecznych)

- zapobieganie niezamierzzonemu kontaktowi człowieka z czynnikiem niebezpiecznym.
Eliminowaniu lub ograniczaniu związanych z procesem pracy ingerencji człowieka w strefach zagrożenia służy przede wszystkim:

- mechanizacja i automatyzacja
- stosowanie systemów diagnozowania niesprawności
- wydłużanie okresów między wymaganymi regulacjami, smarowaniami i innymi czynnościami związanymi z obsługą techniczną
- wydłużanie okresów międzynaprawczych.

Eliminowaniu lub ograniczaniu ekspozycji na niebezpieczne czynniki mechaniczne przez ograniczenie kontaktu służy zatem:

- rozdzielenie w przestrzeni i/lub czasie człowieka oraz maszyny bądź innego przedmiotu pracy tak, aby granice ich naturalnego oddziaływania nie zachodziły na siebie
- przegrodzenie zasięgu granic naturalnego oddziaływania człowieka oraz maszyny lub przedmiotu pracy.

Rozdzielanie granic powinno być realizowane dla niczym nie ograniczanych naturalnych ruchów człowieka, natomiast przegradzanie z zasady powoduje ograniczenie tych ruchów. Rozdzielanie granic oddziaływania zapewnia automatyzacja lub mechanizacja. Jeśli nie można ich zastosować, to rozdzielenie tych granic może być osiągnięte w aspekcie przestrzeni lub czasu. W przestrzeni osiąga się je przez usytuowanie niebezpiecznego czynnika mechanicznego tak, aby człowiek, przy pełnej swobodzie ruchów, nie mógł dosięgnąć do strefy zagrożenia, a w przypadku czynnika zagrażającego zgnieceniem, czynnik niebezpieczny nie dosięgał człowieka.

Podstawę do ustalania odległości uniemożliwiających dosięgnięcie do strefy zagrożenia, nazywanych odległościami bezpieczeństwa, stanowią wymiary antropometryczne i możliwości ruchowe (np. tułowia, kończyn) ustalone w wyniku badań populacji użytkowników.

Uniemöglikowaniu dosięgnięcia strefy niebezpiecznej służy ustalenie jej granicy na wysokości określonej maksymalnym zasięgiem kończyny górnej najwyższego osobnika z populacji użytkowników (odpowiadającego co najmniej 95 centylowi), nawet stojącego na palcach w obuwiu roboczym, z uwzględnieniem zapasu (naddatku) dla zapewnienia bezpieczeństwa. Według tego kryterium określono, że odległość bezpieczeństwa przy sięgnięciu do góry powinna wynosić, co najmniej 2500 mm - przy małym ryzyku urazu, i 2700 mm – przy dużym ryzyku urazu (rysunek). W związku z powyższym, odległość bezpieczeństwa zależy od tego, czy podczas wykonywania pracy przewiduje się ryzyko małe (możliwość dotknięcia, obtarcia), czy duże (możliwość pochwycenia i zranienia).

![Rysunek 6. Sięganie do góry](image)
Przy sięganiu ponad konstrukcją ochronną (rys. 3) odległości bezpieczeństwa powinny być zgodne z wartościami podanymi odpowiednio w tablicach nr 3 i 4.

Rysunek 7. Sięganie ponad konstrukcjami ochronnymi

<table>
<thead>
<tr>
<th>Wysokość konstrukcji ochronnej – b′ (w wartościach w milimetrach)</th>
<th>Odległość pozioma od strefy zagrożenia – c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wysokość a</td>
<td></td>
</tr>
<tr>
<td>1 000</td>
<td>1 200</td>
</tr>
<tr>
<td>2 400</td>
<td>100</td>
</tr>
<tr>
<td>2 200</td>
<td>600</td>
</tr>
<tr>
<td>2 000</td>
<td>1 100</td>
</tr>
<tr>
<td>1 800</td>
<td>1 100</td>
</tr>
<tr>
<td>1 600</td>
<td>1 300</td>
</tr>
<tr>
<td>1 400</td>
<td>1 300</td>
</tr>
<tr>
<td>1 200</td>
<td>1 400</td>
</tr>
<tr>
<td>1 000</td>
<td>1 400</td>
</tr>
<tr>
<td>800</td>
<td>1 300</td>
</tr>
<tr>
<td>600</td>
<td>1 200</td>
</tr>
<tr>
<td>400</td>
<td>1 200</td>
</tr>
<tr>
<td>200</td>
<td>1 100</td>
</tr>
<tr>
<td>0</td>
<td>1 100</td>
</tr>
</tbody>
</table>

Tabela 4. Odległości bezpieczeństwa, które należy stosować, gdy ryzyko jest małe
Wymiary antropometryczne populacji użytkowników stanowią także podstawę do ustalania odstępów, których zachowanie zapobiega zgnieceniu poszczególnych części ciała przez dwie zbliżające się do siebie części. Minimalna odległość bezpieczeństwa dla takich przypadków podano w tablicach 5 i 6.

Tabela 5. Odległości bezpieczeństwa, które należy stosować, gdy ryzyko jest duże

<table>
<thead>
<tr>
<th>Wysokość a (mm)</th>
<th>Wysokość konstrukcji ochronnej – b (w wartościach w milimetrach)</th>
<th>Odległość pozioma od strefy zagrożenia – c (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 000</td>
<td>1 200</td>
</tr>
<tr>
<td>2 600</td>
<td>900</td>
<td>800</td>
</tr>
<tr>
<td>2 400</td>
<td>1 100</td>
<td>1 000</td>
</tr>
<tr>
<td>2 200</td>
<td>1 300</td>
<td>1 200</td>
</tr>
<tr>
<td>2 000</td>
<td>1 400</td>
<td>1 300</td>
</tr>
<tr>
<td>1 800</td>
<td>1 500</td>
<td>1 400</td>
</tr>
<tr>
<td>1 600</td>
<td>1 500</td>
<td>1 500</td>
</tr>
<tr>
<td>1 400</td>
<td>1 500</td>
<td>1 400</td>
</tr>
<tr>
<td>1 200</td>
<td>1 500</td>
<td>1 400</td>
</tr>
<tr>
<td>1 000</td>
<td>1 500</td>
<td>1 400</td>
</tr>
<tr>
<td>800</td>
<td>1 500</td>
<td>1 300</td>
</tr>
<tr>
<td>600</td>
<td>1 400</td>
<td>1 300</td>
</tr>
<tr>
<td>400</td>
<td>1 400</td>
<td>1 200</td>
</tr>
<tr>
<td>200</td>
<td>1 200</td>
<td>900</td>
</tr>
<tr>
<td>0</td>
<td>1 100</td>
<td>500</td>
</tr>
</tbody>
</table>

Tabela 6. Odległości bezpieczeństwa, które należy stosować przy sięganiu kończynami górnymi przez otwory o regulowanym kształcie (dotyczy osób od 14 lat)

<table>
<thead>
<tr>
<th>Część ciała</th>
<th>Ilustracja</th>
<th>Otwór (mm)</th>
<th>Odległość bezpieczeństwa sr (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czubek palca</td>
<td></td>
<td>e ≤ 4</td>
<td>≥ 2 za lewo, ≥ 2 w jednym kwadracie, ≥ 2 kałem</td>
</tr>
</tbody>
</table>
Jeżeli nie można konstrukcyjnie zapewnić zachowania minimalnych odstępów, to należy uniemożliwić sięganie do strefy zgniatania. Użytkownik może ograniczyć ekspozycję głównie przez stosowanie sposobów obsługi zapewniających bezpieczeństwo, a także stosowanie, w koniecznych przypadkach, środków ochrony indywidualnej. Sprzyja temu również kształtowanie bezpiecznych zachowań człowieka. Specyficzne warunki użytkowania (na przykład stosowanie wielkogabarytowych maszyn i różnorodnego wyposażenia stanowisk pracy) wymagają od użytkownika stosowania dodatkowych urządzeń ochronnych związanych z miejscem użytkowania.

Utrzymywanie maszyn i innego wyposażenia stanowisk pracy we właściwym stanie technicznym zapobiega powstawaniu zakłóceń w normalnym ich funkcjonowaniu i związanych z tym zagrożeń czynnikami mechanicznymi. Należy więc przestrzegać wszystkich ustalonych czynności dotyczących przeprowadzania regulacji, konserwacji, wymiany części, a także przewidzianych przeglądów technicznych.

Podstawowe środki zapobiegania zagrożeniom powodowanym przez czynniki mechaniczne
Z wielu środków służących zapobieganiu zagrożeniom powodowanym przez czynniki mechaniczne, istotne znaczenie mają specjalne urządzenia stosowane wyłącznie ze względu na, realizowaną bezpośrednio lub pośrednio, ochronę przed zagrożeniami operatora lub innych osób. Urządzenia te są nazywane urządzeniami ochronnymi. Można je podzielić na dwie zasadnicze grupy:

- osłony
- urządzenia zabezpieczające

Osłony są to wszelkiego rodzaju urządzenia stanowiące materialną przegrodę między człowiekiem a niebezpiecznym czynnikiem mechanicznym, zastosowane specjalnie w celu zapewnienia ochrony człowieka. Funkcje osłony mogą zatem spełniać również pokrywy, drzwi, ogrodzenia itp. Przy projektowaniu i doborze osłon i urządzeń zabezpieczających należy uwzględniać przede wszystkim zagrożenia czynnikami mechanicznymi, nie pomijając jednak innych zagrożeń związanych z procesem pracy.

Osłony i inne urządzenia bezpieczeństwa powinny zatem:

- być mocnej konstrukcji
- być trudne do usunięcia lub wyłączania
- być umieszczane w odpowiedniej odległości od strefy zagrożenia (niebezpiecznej)
- powodować jak najmniej utrudnień w procesie pracy
- nie powodować powstawania dodatkowych czynników niebezpiecznych lub szkodliwych
- umożliwiać wykonywanie, jeżeli to możliwe - bez ich usuwania, koniecznych prac związanych z instalowaniem i/lub wymianą narzędzi czy konserwacją przy ograniczonym dostępie tylko do obszaru, w którym prace te mają być wykonywane.

Ogólnie osłony dzieli się ze względu na: sposób ich zamocowania i działania, możliwość regulacji, stopień wypełnienia oraz stopień ochrony niebezpiecznego czynnika.

Osłona może być połączona z miejscem zainstalowania dwojako:

- na stałe, czyli nierozłącznie (np. przyspawana) lub za pomocą połączeń rozłącznych (np. połączenia śrubowego) w sposób uniemożliwiający usunięcie lub otwarcie jej bez użycia narzędzi; osłona taka jest nazywana osłoną stałą
- za pomocą elementów mechanicznych umożliwiających jej otwieranie bez użycia narzędzi (np. zawiasy, prowadnice); osłona taka jest nazywana osłoną ruchomą.

Osłona może działać:

- samodzielnie (tj. bez blokady), przy czym jest ona skuteczna tylko wtedy, kiedy jest zamknięta; w odniesieniu do osłony stałej, określenie „zamknięta”, oznacza „połączona z miejscem zainstalowania”
- w powiązaniu z urządzeniem blokującym (blokadą) wyposażonym lub nie w urządzenie ryglujące.

Urządzenie blokujące, w które jest wyposażona osłona powoduje, że funkcje maszyny mogące stwarzać zagrożenie czynnikami mechanicznymi - przed którymi chroni osłona - nie mogą być wykonywane do chwili zamknięcia osłony. Otwarcie osłony w czasie, gdy maszyna wykonuje takie funkcje, powoduje przerwanie ruchu niebezpiecznego maszyny. Osłona taka jest nazywana osłoną blokującą.

Innym kryterium podziału osłon jest ich konstrukcja. Osłony mogą być pełne lub z otworami o różnych kształtach. Stosuje się je np. w celu zmniejszenia ciężaru lub zapewnienia lepszego chłodzenia.

Położenie osłony może być regulowane lub nie.

Wszędzie tam, gdzie dostęp operatora do strefy zagrożenia podczas normalnej pracy nie jest wymagany, należy stosować osłony stałe. Mogą być ewentualnie stosowane ruchome osłony blokujące lub samoczynnie zamykające się bądź odległościowe samoczynne urządzenia ochronne (np. kurtyny świetlne).

Jeżeli jest konieczny częsty dostęp operatora do strefy niebezpiecznej, to należy zastosować ruchomą osłonę blokującą lub odległościowe samoczynne urządzenie ochronne. Mogą być ewentualnie stosowane osłony regulowane lub samoczynnie zamykające się bądź urządzenia obręczowego sterowania.

Urządzenia zabezpieczające są to wszelkie, nie stanowiące materialnej przegrody (inne niż osłony),
urządzenia ochronne. Podczas normalnego funkcjonowania maszyny uniemożliwiają one uaktywnienie czynnika mechanicznego wówczas, gdy człowiek lub część jego ciała znajduje się w strefie zagrożenia, lub uniemożliwiają wtargnięcie do tej strefy w czasie działania tego czynnika. Urządzenia zabezpieczające zapobiegają także naruszeniu normalnego funkcjonowania maszyny lub innego obiektu technicznego. Urządzenia zabezpieczające są zatem urządzeniami uniemożliwiającymi zarówno ekspozycję człowieka na uaktywnione czynniki mechanicalne, występujące podczas normalnego funkcjonowania maszyny i innych obiektów technicznych, jak i generowanie nowych czynników poprzez zapobieganie sytuacjom anormalnym. Do tej grupy zalicza się zatem zarówno urządzenia oburęcznego sterowania, urządzenia fotoelektryczne, maty czułe na nacisk, jak i zawory bezpieczeństwa, ograniczniki udźwigu oraz urządzenia blokujące, ryglujące, zezwalające na uruchomienie maszyny i inne.

Urządzenia zabezpieczające powinny w szczególności:
- uniemożliwiać wzrost obciążenia siłą, ciśnieniem lub obrotami itp.; w tym celu są stosowane np. ograniczniki udźwigu, sprzęgło przeciążeniowe, zawory bezpieczeństwa, ograniczniki obrotów
- uniemożliwiać przekroczenie założonych zasięgów ruchu, np. przez stosowanie wyłączników krańcowych
- zapewniać łączenie bezkolizyjne kolejność ruchów maszyny lub przebiegu procesów technologicznych, np. przez odpowiednie zblokowanie elementów sterowniczych
- uniemożliwiać powstanie zagrożeń związanych z zanikiem mediów roboczych; funkcję tę spełniają np. zawory zwrotne utrzymujące niezbędne ciśnienie w układach mocujących do momentu zatrzymania ruchu maszyny.

Działanie urządzeń odległościowych samoczynnych, rozdzielających w czasie oddziaływania człowieka i czynnika mechanicznego, polega na tym, że:
- uniemożliwiają one aktywizację czynnika niebezpiecznego (np. ruchu roboczego suwaka prasy), dopóki część ciała, która wniknęła w nadzorowany przez nie obszar, znajduje się w strefie zagrożenia
- zatrzymują działanie niebezpiecznego czynnika mechanicznego (np. niebezpiecznego ruchu maszyny) zanim wnikająca część ciała do niego dotrze.

Odległość między takim urządzeniem ochronnym a granicą strefy niebezpiecznej powinna być taka, aby czas wniknięcia części ciała do tej strefy był dłuższy od czasu, który upłynie od momentu pobudzenia urządzenia ochronnego do całkowitego zatrzymania działania niebezpiecznego czynnika mechanicznego (np. niebezpiecznego ruchu maszyny lub jej części).

Urządzenia odległościowe mogą być aktywowane dwojako:
- mechanicznie (poprzez dotyk lub nacisk)
- niemechanicznie (bezdotykowo).

Urządzeniami aktywowanymi mechanicznie są, między innymi:
- podatne urządzenia ochronne - są to wszelkiego rodzaju, połączone z wyłącznikami linki czy pręty, którymi jest ograniczona strefa zagrożenia, tak aby zapobiec swobodnemu dostępowi do niej. Przy nacisku wnikają się one lub odsuwają, powodując zadziałanie wyłączników, a w rezultacie zatrzymanie ruchu maszyny
- urządzenia czułe na nacisk - urządzenia te po przekroczeniu ustalonego nacisku (np. pod ciężarem człowieka) powodują wyłączenie maszyny. Instalowane są najczęściej wokół stanowisk zmechanizowanych lub zrobotyzowanych. Niekiedy, np. w dźwigniach osobowych, urządzenia takie są instalowane jako umożliwiające włączenie ruchu tylko wówczas, gdy operator znajduje się na tym urządzeniu, w sytuacji zapewniającej bezpieczeństwo, a uniemożliwiają włączenie tego ruchu dzieciom
- urządzenia oburęczne - zapobiegają one urazom kończyn górnych, umożliwiając włączenie ruchu niebezpiecznego części maszyny tylko wówczas, gdy obie ręce jednocześnie naciskają elementy sterownicze usytuowane w omówionej wcześniej odległości zapewniającej bezpieczeństwo. Stosowane są głównie w prasach mechanicznych, girotynach i innych maszynach, w których ze względów technologicznych niezbędne jest sięganie kończynami górnymi do strefy zagrożenia.

W bezdotykowych urządzeniach odległościowych do uniemożliwienia włączenia lub przerywania ruchu niebezpiecznych części wykorzystuje się zmiany promienia światelnego, pola elektromagnetycznego,
elektrostatycznego lub innych rodzajów pól zachodzące podczas ich naruszenia przez część ciała człowieka lub przedmiot. Urządzeniami tego rodzaju są urządzenia fotoelektryczne, pojemnościowe, indukcyjne i ultradźwiękowe.

Przy określaniu odległości zapewniającej bezpieczeństwo przyjmuje się prędkość przemieszczania się kończyny górnej równą 2 m/s, jeśli odległość ta jest mniejsza od 500 mm, i 1,6 m/s - przy większych odległościach (wg normy PN-EN 999:2002).

Do tej grupy urządzeń należy zaliczyć również skanery, coraz częściej montowane, zwłaszcza na środkach transportu wewnętrznego, np. wózkach napędzanych, które wytwarzają pole ochronne przed poruszającą się maszyną. Jeśli człowiek lub inna przeszkoda znajdzie się w zasięgu tego pola, to generowany jest sygnał do zatrzymania poruszającego się wózka lub innej przemieszczającej się maszyny. Istotą jest zapewnienie takiej długości strefy ochronnej, aby zahamować przemieszczającą się maszynę przed uderzeniem w człowieka lub przeszkodę.

Jeśli wyczerpanie wszystkich możliwości eliminowania zagrożeń mechanicznych lub zmniejszenia związanego z nimi ryzyka i jest ono wyższe od akredytowanego, to należy stosować środki ochrony indywidualnej. Omówione wyżej urządzenia i środki chronią w sposób czynny przed następstwami zagrożeń mechanicznych. Ochronę bierną stanowią wszelkiego rodzaju informacje o zagrożeniach w postaci barw, znaków, sygnałów itp. Środki te, informując lub ostrzegając o zagrożeniach, mogą istotnie zmniejszać ryzyko związane z tymi zagrożeniami.

Pozostałe środki zmniejszające ryzyko związane z zagrożeniami mechanicznymi

Najczęściej stosowanymi środkami ochrony zbiorowej przed upadkiem z wysokości stanowią balustrady, natomiast najczęściej stosowanymi środkami ochrony przed wpadnięciem osób do otworów i zagłębień stanowią pokrywy. W sytuacji, gdy ze względów technologicznych np. podczas budowy budynku otwory nie mogą być zakryte pokrywami lub wówczas, gdy pokrywy są odchylone lub zdjęte to strefy niebezpieczne również powinny być wygrodzone balustradami. Balustrada składa się z poręczy umieszczonyj na wysokości 1,1 m , poprzeczki umieszczanej w połowie wysokości oraz krawężnika o wysokości 0,15 m. Przykłady zastosowań balustrad przedstawiono na rys.
Bezpośrednim ingerencjom człowieka w strefy niebezpieczne zapobiega stosowanie prostych narzędzi pomocniczych przedstawionych na rysunku służących do wkładania i wyjmowania oraz wprowadzania elementów do strefy niebezpiecznej.

Ręczne narzędzia pomocnicze

Eliminowaniu lub ograniczaniu związanych z procesem pracy ingerencji człowieka w strefach niebezpiecznych służą przede wszystkim:

- mechanizacja i automatyzacja
- stosowanie systemów diagnozowania niesprawności
- wydłużanie okresów między wymaganymi regulacjami, smarowaniami i innymi czynnościami związanymi z obsługą techniczną
- wydłużanie okresów międzynaprawczych.

Automatyzację można na przykład realizować poprzez stosowanie robotów, manipulatorów, urządzeń przenoszących, zdmuchiwaczy. Mechanizację można na przykład realizować poprzez stosowanie ześlizgów, podajników, bębłów odwijających itp.. Należy uważać, żeby stosowanie tych urządzeń nie powodowało dalszych zagrożeń (np. pochwyceniem, zgnieceniem) między urządzeniami a częściami maszyny lub obrabianymi przedmiotami/materialami.

Innymi środkami zmniejszającymi ryzyko związane z zagrożeniami mechanicznymi są:

- środki bezpiecznego dojść (schody, drabiny, klamry, pomosty) i dostępu (otwory) do miejsc obsługi technicznej,
- wyposażenie do łatwego przenoszenia maszyn i ich ciężkich części z zachowaniem bezpieczeństwa (np. haki, zaczepy, śruby oczkowe, rowki prowadzące dla wideł wózków podnośnikowych),
Elektryczność statyczna i energia elektryczna

Zagrożenia towarzyszące wykorzystaniu energii elektrycznej

Powszechnie stosowanie urządzeń zasilanych energią elektryczną niesie ze sobą różnego rodzaju zagrożenia zarówno dla człowieka jak i jego środowiska. Są to:

- porażenia oraz oparzenia pradem i lukiem elektrycznym
- zagrożenia pożarowe
- zagrożenia wybuchem
- zagrożenia od elektryczności statycznej
- zjawiska związane z wyładowaniami atmosferycznymi.

Zagrożenia tych nie można uniknąć, ale można i trzeba zmniejszać zarówno ryzyko ich występowania, jak i skutki wypadków elektrycznych. Analizy wykazują, że przyczyną 70÷85% wypadków elektrycznych jest niewłaściwe postępowanie człowieka, wynikające często z lekkomyślności, nieprzestrzegania przepisów BHP, braku umiejętności bądź wiedzy o zagrożeniu.

Uwaga:

Napięcia w elektrotechnice dzieli się na:

- napięcia niskie (nn) o wartości znamionowej Un do 1000 V
- napięcia wysokie (WN) o wartości znamionowej Un powyżej 1000 V dla prądu przemiennego o częstotliwości 50 Hz, oraz
- napięcia niskie o wartości znamionowej Un do 1500 V
- napięcia wysokie o wartości znamionowej Un powyżej 1500 V dla prądu stałego.

Oddziaływanie prądu elektrycznego na organizm ludzki

Prąd przemienny o częstotliwości 50 Hz i napięciu 400/230 V jest najbardziej rozpowszechnionym środkiem przenoszenia energii elektrycznej. Z tego powodu większość porażeń i oparzeń ludzi prądem elektrycznymi, nazywanych wypadkami elektrycznymi, występuje przy styczności człowieka z urządzeniami elektroenergetycznymi prądu przemiennego, przy czym najczęstsze są rażenia na drodze ręka - nogi lub ręka - ręka. Ponadto prąd przemienny o częstotliwości od 15 do 100 Hz powoduje najgroźniejsze dla życia reakcje organizmu, stąd skutki rażenia nim rozpatruje się szczególnie wnikliwie.

Działanie prądu elektrycznego na organizm ludzki może być pośrednie lub bezpośrednie.

Działanie pośrednie, powstające bez przepływu prądu przez ciało człowieka, powoduje takie urazy, jak:
oparzenia ciała wskutek pożarów wywołanych zwarciami elektrycznym lub spowodowane dotknięciem do nagrzanych elementów

groźne dla życia oparzenia ciała łukiem elektrycznym, a także metalizacja skóry spowodowana osadzaniem się roztropionych cząstek metalu

uszkodzenia wzroku wskutek dużej jaskrawości łuku elektrycznego

uszkodzenia mechaniczne ciała w wyniku upadku z wysokości lub upuszczenia trzymanego przedmiotu.

Działanie bezpośrednie - porażenie elektryczne wskutek przepływu prądu elektrycznego przez ciało ludzkie (tzw. prądu rażenia) może wywołać wiele zmian fizycznych, chemicznych i biologicznych w organizmie (a nawet śmierć człowieka) poprzez oddziaływanie na układ nerwowy oraz w wyniku elektrolizy krwi i płynów fizjologicznych.

Porażenie elektryczne może objawiać się:

- odczuwaniem bólu przy przepływie prądu, kurczami mięśni (skurcz mięśni dłoni może uniemożliwić samouwolnienie się porażonego)
- zatrzymaniem oddechu, zaburzeniami krążenia krwi
- zaburzeniami wzroku, słuchu i zmysłu równowagi
- utratą przytomności
- migotaniem komór sercowych (fibriłacja) - bardzo groźnym dla życia człowieka, gdyż zazwyczaj prowadzi ono do zejścia śmiertelnego
- oparzeniami skóry i wewnętrznych części ciała, do zwęglenia włącznie.

Zjawisko porażenia ma miejsce wówczas, gdy występuje droga dla prądu rażenia i istnieje źródło napięcia wymuszającego przepływ takiego prądu. W praktyce dochodzi do tego, gdy człowiek styka się jednocześnie z dwoma punktami nie należącymi do obwodu elektrycznego, z którymi mogą się zetknąć jednocześnie obie ręce lub ręka i noga człowieka. Napięcie dotykowe spodziewane jest to największa wartość napięcia dotykowego w urządzeniach lub w instalacji elektrycznej w razie uszkodzenia izolacji, gdy wartość impedancji w miejscu zwarcia jest pomijalna.

Napięcie dotykowe jest to napięcie między dwoma punktami nie należące do obwodu elektrycznego, z którymi mogą się zetknąć jednocześnie obie ręce lub ręka i noga człowieka. Napięcie dotykowe spodziewane jest to największa wartość napięcia dotykowego w urządzeniach lub w instalacji elektrycznej w razie uszkodzenia izolacji, gdy wartość impedancji w miejscu zwarcia jest pomijalna.

Napięcie rażenia dotykowe jest to spadek napięcia wzdłuż drogi przepływu prądu przez obie nogi człowieka (czyli spadek napięcia na rezystancji ciała na drodze ręka-łokcie, noga-łokcie, albo ręka-łokcie, albo ręka-ramiona, albo ręka-ramiona).

Napięcie krokowe jest to napięcie między dwoma punktami na powierzchni ziemi lub na powierzchni stanowiska pracy, odelęgalnymi od siebie o 1 m (jeden krok).

Napięcie rażenia krokowe jest to spadek napięcia wzdłuż drogi przepływu prądu przez obie nogi człowieka (czyli spadek napięcia na rezystancji ciała na drodze rąk-koła).

Skutki rażenia prądem elektrycznym zależą od:

- rodzaju prądu, a więc czy jest to rażenie: prądem przemiennym o małej częstotliwości (15 - 100Hz), prądem przemiennym o dużej częstotliwości, krótkotrwałymi, jednokierunkowymi impulsami prądowymi, prądem stałym,
- wartości napięcia i natężenia prądu rażenia oraz czasu jego przepływu
- długości drogi przepływu prądu przez ciało człowieka,
- stanu psychofizycznego porażonego
- długości drogi przepływu prądu przez ciało człowieka,
- temperatury i wilgotności skóry,
- powierzchni styku z przewodnikiem,
- siły docisku przewodnika do naskórka.

Impedancja naskórka (skórę) w dużym stopniu zależy od stanu fizycznego naskórka (gruby, cienki,
zdarty, suchy, wilgotny, mokry) i od powierzchni styku z zewnętrznym obwodem elektrycznym. Wartość impedancji naskórka nie jest stała i zależy od:

- wartości napięcia dotykowego,
- zatrzymaniem oddechu, zaburzeniami krążenia krwi
- wartości natężenia prądu,
- częstotliwości prądu,
- czasu przepływu prądu rażenia,
- temperatury i wilgotności skóry,
- powierzchni styku z przewodnikiem,
- siły docisku przewodnika do naskórka.

Wartość impedancji naskórka zawiera się w szerokich granicach - od kilkuset do kilkunastu tysiecy omów. Przy małych napięciach dotykowych (od 0 do 150 V) ma ona znacznny wpływ na impedancję ciała. W miarę wzrostu wartości napięcia wpływ ten jest coraz mniejszy, aż do pomijalnie małego przy napięciach większych niż 150 V.

Rezystancja wewnętrzna ciała zależy głównie od drogi przepływu i jest największa przy przepływie prądu na drodze ręka - ręka - nogi (stopa), przy czym jej wartość jest równa około kilkuset omów. Najmniejsza wartość impedancji jest na drodze przepływu prądu - kark. Zależność impedancji naskórka od stopnia zawilgocenia skóry czy częstotliwości prądu też jest zmienna, a więc zmieniona jest też impedancja ciała. Przy wilgotności względnej otaczającego powietrza powyżej 75% impedancja ciała nie zależy od impedancji naskórka i jest równa praktycznie tylko rezystancji wewnętrznej.

Tabela 8. Wartości impedancji ciała człowieka w zależności od napięcia dotykowego Ud dla różnych części badanej populacji ludzi dorosłych (wg Raportu IEC 479)

<table>
<thead>
<tr>
<th>Napięcie dotykowe, V</th>
<th>Graniczne wartości impedancji człowieka dla różnych części populacji, Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5% populacji</td>
</tr>
<tr>
<td>25</td>
<td>1750</td>
</tr>
<tr>
<td>50</td>
<td>1450</td>
</tr>
<tr>
<td>75</td>
<td>1250</td>
</tr>
<tr>
<td>100</td>
<td>1200</td>
</tr>
<tr>
<td>125</td>
<td>1125</td>
</tr>
<tr>
<td>220</td>
<td>1000</td>
</tr>
<tr>
<td>700</td>
<td>750</td>
</tr>
<tr>
<td>1000</td>
<td>700</td>
</tr>
<tr>
<td>pow. 1000</td>
<td>650</td>
</tr>
</tbody>
</table>

Z powyższych rozważań wynika fakt, że należy do rozpatrywania zjawiska porażenia przyjąć dwie podstawowe klasy warunków środowiskowych oznaczonych jako W1 i W2:

- W1 warunki normalne, w których wartość rezystancji ciała ludzkiego mierzonej w stosunku do ziemi jest nie mniejsza niż 1000 Ω; do środowisk normalnych zalicza się: lokale mieszkalne, biurowe, sale widowiskowe, szpitalne, szkolne itp.,
- W2 warunki szczególne, w których wartość rezystancji ciała człowieka mierzona w stosunku do ziemi jest mniejsza niż 1000 Ω; do środowisk szczególnych zalicza się: tereny otwarte, lasienki i
natryski, sauny, obory, chlewnie, pomieszczenia produkcyjne o wilgotności względnjej większej niż 75 % oraz o temperaturze wyższej niż 35o C lub mniejszej niż -5o C. W takich warunkach środowiskowych pomieszczenia są zwykle wilgotne, wilgotna jest również skóra człowieka, a podłogi (podłoża) charakteryzują się małą rezystancją.

Dodatkowo wyróżnia się warunki środowiskowe specjalne (W3), np. baseny kąpielowe lub wnętrza metalowych zbiorników, dla których dopuszczalne wartości napięć rażenia dotykowych powinny być mniejsze niż dla klasy W2.

W raporcie IEC-479 przedstawiono w formie wykresu krzywe graniczne reakcji organizmu człowieka przy porażeniu pradem elektrycznym o częstotliwości 50 Hz na drodze lewa dłoni - styki. Krzywe te, oznaczone literami a, b, c1, c2 i c3, są granicami stref różnych skutków przepływu prądu rażenia. Zasadniczo większość ludzi dorosłych nie odczuwa przepływu prądu o wartości natężenia do 0,5 mA - strefa 1 i jej granica - prosta a na wykresie. Dlatego minimalną wartość prądu, która wywołuje takie odczucia, nazywa się wartość progową prądu odczuwania lub percepji, która nie zależy od czasu przepływu prądu.

Rysunek 8. Krzywe graniczne reakcji organizmu człowieka przy porażeniu pradem elektrycznym o częstotliwości 50 Hz na drodze lewa dłoni - styki, wg IEC 479-1

1, 2, 3, 4 - strefy różnych skutków przepływu prądu rażenia,

tr - czas rażenia, Ir - wartość natężenia prądu rażenia,

Prąd samouwolnienia - wartość progowa natężenia prądu, przy której jest jeszcze możliwe rozwarcie palców przez samego porażonego, nazywana jest prądem samouwolnienia i wg IEC jest to wartość 10 mA.

W strefie 3 - pomiędzy krzywymi b i c1 - obserwuje się nasilenie bólu, wzrost ciśnienia krwi oraz skurcze tęczowych mięśni poprzecznie prążkowanych i skurcze mięśni oddechowych (mięśni płuc - powyżej 20 mA), co może wywołać niedotlenienie organizmu, trudności z oddychaniem, zwiększenie ilości dwutlenku węgla we krwi i zakwaszenie tkanki, skutkiem czego może być sinica skóry i błon śluzowych. Zwykle są to odwracalne skutki fizjologiczne - bez uszkodzeń organizmu. Istnieje jednak duże prawdopodobieństwo pojawienia się odwracalnych zakłóceń powstawania i przewodzenia impulsów w sercu, włącznie z...
migotaniem przedsionków serca (fibrylacją) i przejściową blokadą pracy serca bez wystąpienia migotania komór, nasilające się wraz ze wzrostem natężenia prądu i czasem jego przepływu. W skrajnych przypadkach mogą występować skurcze naczyń wieńcowych i w efekcie zawał mięśnia sercowego. Przyjmuje się, że prąd o wartości natężenia 30 mA powoduje początek paraliżu dróg oddechowych. Krzywa c1 oznacza graniczne wartości prądów nefibrylacyjnych. W strefie 4 - na prawo od krzywej granicznej c1 - można zaobserwować te same skutki prądu rażenia, co w strefie 3, nasilające się wraz ze wzrostem natężenia prądu i czasu jego przepływu, ale dodatkowo może wystąpić migotanie (fibrylacja) komór serca. Prawdopodobieństwo wystąpienia migotania komór serca rośnie do około 5% wkrótce po dojściu prądu i jego przepływu oraz 50% aż do dosłownego przepływu prądu (krzywa c3). W skrajnych przypadkach mogą występować skurcze naczyń wieńcowych i w efekcie zawał mięśnia sercowego.

Przyjmowane się, że prąd o wartości natężenia 30 mA powoduje początek paraliżu dróg oddechowych. Krzywa c1 oznacza graniczne wartości prądów nefibrylacyjnych. W strefie 4 - na prawo od krzywej granicznej c1 - można zaobserwować te same skutki prądu rażenia, co w strefie 3, nasilające się wraz ze wzrostem natężenia prądu i czasu jego przepływu, ale dodatkowo może wystąpić migotanie (fibrylacja) komór serca. Prawdopodobieństwo wystąpienia migotania komór serca rośnie do około 5% wkrótce po dojściu prądu i jego przepływu oraz 50% aż do dosłownego przepływu prądu (krzywa c3).

Krzywa c2 oznacza graniczną wartość prądu w strefie 3, na której mogą wystąpić migotanie (fibrylacja) komór serca. Prawdopodobieństwo wystąpienia migotania komór serca rośnie do około 5% wkrótce po dojściu prądu i jego przepływu oraz 50% aż do dosłownego przepływu prądu (krzywa c3).

Działanie termiczne prądów

Przepływający przez ciało człowieka prąd rażenia powoduje wydzielenie się w tkankach organizmu energii cieplnej, gdyż mają one określoną rezystancję (impedancję). Ilość wydzielonej energii cieplnej zależy od wartości natężenia prądu, rezystancji tkanek oraz od czasu przepływu prądu przez ciało lub jego część. W zależności od pojemności cieplnej tkanki (ciepła właściwego) na skutek wydzielonej energii cieplnej następuje wzrost temperatury. Gdy nie przekracza 5 K, nie występują zmiany patologiczne, jeżeli jednak temperatura wzrasta o 10 i więcej K, tkanki ulegają zniszczeniu wskutek martwicy. Nazywa się to oparzeniem elektrycznym. Najbardziej niebezpieczne dla zdrowia i życia człowieka są tzw. rażenia skojarzone, kiedy przez ciało człowieka przepływa prąd łuku elektrycznego.

Łuk elektryczny albo wyładowanie łukowe może powodować urazy:

- uszkodzenia ciała odłamkami zniszczonych urządzeń elektrycznych lub podczas upadku, wskutek działania fali uderzeniowej
- oparzenia ciała, których rozległość i głębokość są zależne od gęstości energii cieplnej łuku oraz uszkodzenia skórki oka, z powodu wzrostu temperatury płynu soczewkowego, jako wynik oddziaływania termicznego
- metalizację nieosłoniętych części ciała oraz uszkodzenia rogówki oka, wywołane roztopionymi, gorącymi cząsteczkami metali i materiałów izolacyjnych, unoszonymi gorącym strumieniem gazów, jako wynik oddziaływania termiczo-mechanicznego
- uszkodzenia rogówki oka na skutek promieniowania nadfioletowego
- ogrzanie płynu soczewkowego oka na skutek promieniowania podczerwonego
- rozległe oparzenia, a nawet spalenia kończyn i innych części ciała ludzkiego, często kończące się śmiercią na skutek rażenia skojarzonego (prąd łuku elektrycznego przepływa przez ciało ludzkie).

Rażenia skojarzone zdarzają się w stacjach elektroenergetycznych wysokiego napięcia, gdy człowiek zbliży się do urządzenia elektroenergetycznego na odległość, przy której możliwe jest przebiecie warstwy izolacyjnej powietrza. Wtedy następuje wyładowanie iskrowe, które inicjuje wystąpienie łuku elektrycznego pomiędzy tym urządzeniem a najbliższą częścią ciała ludzkiego.

Ochrona przeciwporażeniowa
W celu ochrony człowieka przed skutkami porażenia prądem elektrycznym są stosowane następujące środki ochrony przeciwporażeniowej:

środki nietechniczne takie, jak:
- popularyzacja sposobów i zasad bezpiecznego użytkowania energii elektrycznej,
- szkolenie wstępne i okresowe wszystkich pracowników używających urządzenia elektryczne i obsługujących urządzenia elektryczne
- wymagania kwalifikacyjne dla pracowników obsługujących urządzenia elektryczne,
- organizacja pracy (instrukcje eksploatacji urządzeń elektroenergetycznych, pisemne polecenia wykonywania prac)
- egzekwowanie przestrzegania reguł bezpieczeństwa,
- badania okresowe,
- szkolenie w zakresie udzielania pierwszej pomocy przy porażeniach.

środki techniczne takie, jak:
- ochrona przed dotykiem bezpośrednim (ochrona podstawowa),
- ochrona przed dotykiem pośrednim (ochrona dodatkowa),
- ochrona przed dotykiem bezpośrednim i pośrednim - realizowana przez zasilanie napięciem bezpiecznym,
- sprzęt ochronny (w tym środki ochrony indywidualnej) – dla zastosowań, w których wyżej wymienione nie mogą być wykorzystane (np. przy naprawie urządzeń elektroenergetycznych).

Ponieważ wszystkie urządzenia elektryczne, których wartości napięć roboczych są większe niż wartości bezpieczne, zasadniczo stwarzają niebezpieczeństwo porażenia prądem elektrycznym, ochrona przeciwporażeniowa powinna być stosowana w każdej sieci czy instalacji elektroenergetycznej i we wszystkich przyłączonych odbiornikach energii elektrycznej.

Ze względu na fakt, iż skuteczność środków nietechnicznych w poważnej mierze zależna jest od człowieka i jego postępowania, wymaga się zatem stosowania rozwiązań mniej od niego zależnych – takimi więc są środki techniczne, „wbudowane” w urządzenie przez producenta.

Rodzaj technicznych środków ochrony w poszczególnych urządzeniach lub ich częściach powinien być dostosowany zwłaszcza do wartości napięcia, warunków środowiskowych oraz sposobu użytkowania i obsługi. Istotne są też kwalifikacje osób mających dostęp do urządzenia oraz rezystancja ciała ludzkiego i charakter kontaktu człowieka z potencjałem ziemi.

W przypadku urządzeń eksploatowanych przez osoby poinstruowane i wykwalifikowane, dopuszcza się w pewnych warunkach niestosowanie niektórych rozwiązań ochrony. Natomiast w pozostałych przypadkach wymaga się stosowania ochrony przed dotykiem bezpośrednim razem z ochroną przed dotykiem pośrednim (ochroną podstawową).

Ochrona przed dotykiem bezpośrednim ma za zadanie chronić ludzi i zwierzęta przed zagrożeniami wynikającymi z dotyku do **części czynnych** urządzeń elektrycznych (części znajdujących się pod niebezpiecznym napięciem w czasie normalnej pracy tych urządzeń).

Zasadą realizuje się poprzez uniemożliwienie (utrudnienie) człowiekowi dotyku do tych części, co zapobiega z kolei przepływowi prądu rażenia przez jego ciało.

W urządzeniach elektrycznych o napięciu do 1kV wymaga się zastosowania przynajmniej jednego z następujących środków ochrony:
- izolowanie części czynnych
- stosowanie obudów lub osłon
- stosowanie ogrodzeń
- stosowanie barier i przeszkód
- umieszczenie części czynnych poza zasięgiem ręki
- ochrona przed napięciami szczątkowymi.

Ochrona przez izolowanie części czynnych jest sposobem stosowanym zwykle w procesie produkcyjnym przez wytwornicę urządzenia. Polega na całkowitem pokryciu części czynnych izolacją roboczą o dużą wartości rezystancji oraz o odpowiedniej wytrzymałości elektrycznej. Musi ona być
dostosowana do narażeń wewnętrznych, wynikających z charakteru urządzenia (napięć oraz możliwych przepięć), a także dostosowana do spodziewanych narażeń zewnętrznych i środowiskowych, takich jak: podwyższone wilgoci, niska lub wysoka temperatura, narażenia mechaniczne, agresywność chemiczna otaczaçego środowiska, bezpośrednio padające światło słoneczne itp. Usunięcie izolacji jest możliwe tylko przez zniszczenie.

Ochrona przez stosowanie obudów lub osłon polega na umieszczeniu w ich wnętrzu części czynnych, które z różnych względów nie mogą być powleczone izolacją, co zapobiega dotknięciu bezpośrednim. Obudowy i osłony chronią także aparaty i urządzenia elektryczne przed niekorzystnymi wpływami środowiska.

Ten środek ochrony musi spełniać następujące warunki:

- obudowy lub osłony nie mogą dać się usunąć (otworzyć, zdementować) bez użycia narzędzia lub klucza, co ogranicza dostęp do ich wnętrza osobom nieupoważnionym, a jeżeli osoby te muszą je otwierać – to części czynne mają być odlączone spod napięcia bądź odpowiednio osłonięte
- muszą być odporne na normalnie występujące w warunkach eksploatacji narażenia zewnętrzne: mechaniczne, temperaturę, wilgotność, agresywność chemiczną otaczaçego środowiska itp.
- obudowy i osłony muszą mieć stopień izolacji IP (IP 2X);)|(IP 2X)|

Ochrona przez stosowanie ogrodzeń polega na umieszczeniu części czynnych w sposób czyniący je niedostępnymi dla dotknięcia.

Ochrona przez stosowanie barier i przeszkód jest ochroną przed niezamierzonym (a nie przed rozmyślnym) dotknięciem części czynnych. Może być stosowana tylko w przestrzeniach dostępnych wyłącznie dla osób posiadających odpowiednie kwalifikacje (np. przestrzenie lub pomieszczenia ruchu elektrycznego).

Ochrona przez umieszczenie poza zasięgiem ręki polega na umieszczaniu części czynnych tak, by były niedostępne z danego stanowiska. Oznacza to, że znaleźć się muszą poza obszarem w kształcie walca o średnicy 2,5 m, który rozciąga się 2,5 m ponad poziomem ustawienia stóp człowieka i 1,25 m poniżej tego poziomu. Ten środek ochrony może być stosowany głównie w pomieszczeniach ruchu elektrycznego.

Ochrona przed napięciem szczątkowym ma na celu zapobieganie porażeniu wskutek dotknięcia części czynnych, na których utrzymuje się napięcie po odłączeniu od zasilania, np. wskutek zakumulowanego ładunku na pojemności elektrycznej elementów lub indukowania napięcia przez silniki pracujące z wybiegu. W przypadku istnienia takiego zagrożenia wymagane jest obniżenie napięcia bezpiecznego w odpowiednio krótkim czasie albo uniemożliwienie dostępu do części czynnych.

Uzupełnieniem ochrony przed dotykiem bezpośredni może być użycie wysokoczułych urządzeń ochronnych różnicowoprądowych (o prądzie wyzwalającym nie większym niż 30 mA), które zwiększają skuteczność ochrony podstawowej, ale nie mogą być jedynym jej środkiem.

Ochrona przed dotykiem pośrednim ma na celu ograniczenie skutków porażenia w razie dotknięcia do części przewodzących dostępnych, które niespodziewanie znalazły się pod niebezpieczeństwem napięciem (np. wyniku uszkodzenia izolacji). Działanie takie powinno być realizowane poprzez:

- uniemożliwienie przepływu prądu przez ciało człowieka lub zwierzęcia, lub
- ograniczenie wartości prądu rażeniowego lub czasu jego przepływu.

Ochrona przed dotykiem pośrednim w urządzeniach elektrycznych niskiego napięcia może być osiągnięta przez zastosowanie co najmniej jednego z poniższych środków:

- samoczynnego wyłączenia zasilania
- urządzeń II klasy ochronności lub o izolacji równoważnej
- izolowanie stanowiska
- nie uziemionych połączeń wyrównawczych
- separacji elektrycznej

Ochrona przez samoczynne wyłączenie zasilania jest najbardziej rozpowszechnionym w Polsce
środkiem ochrony w sieciach i instalacjach elektrycznych niskiego napięcia. Jej zastosowanie wiąże się z koniecznością: doprowadzenia do każdej części przewodzącej dostępną przewodu ochronnego oraz zastosowania urządzenia powodującego samoczynne wyłączenie zasilania. Ochrona powinna być tak wykonana, aby w razie zwarcia między częścią czynną a częścią przewodzącą dostępną (np. przewodzącą obudową urządzenia elektrycznego) lub przewodem ochronnym, spodziewane napięcie dotykowe o wartości większej niż 50 V prądu przemiennego lub 120 V prądu stałego (nie tętniącego) było wyłączone tak szybko, aby nie wystąpiły niebezpieczne skutki patofizjologiczne. Wymaganie to będzie spełnione wówczas, gdy w wyniku zwarcia powstanie prąd o takim natężeniu, że powoduje samoczynne zadziałanie urządzenia wyłączającego w dostatecznie krótkim czasie. Musi być zatem stworzona odpowiednia droga dla prądu zwarciowego, złożona z przewodów: fazowych oraz ochronnych - łączących wszystkie dostępne części przewodzące urządzeń elektrycznych z punktem neutralnym sieci lub z ziemią, w zależności od układu sieciowego. Urządzeniami samoczynnie wyłączającymi prąd zwarcia, mogą być:

- zabezpieczenia przetętniowe (reagujące na wzrost wartości prądu w obwodzie), np. bezpieczniki topikowe albo wyłączniki samoczynne z wyzwalaczami lub przekaźnikami nadprądowymi,
- urządzenia ochronne różnicowoprądowe reagujące na pojawienie się prądu upływu z obwodu (nie można ich stosować w układzie sieciowym TN-C).

Samoczynne wyłączenie zasilania jest skuteczne wówczas, gdy zabezpieczenie dobrane jest odpowiednio do parametrów obwodu zasilającego.

Ochrona przez zastosowanie urządzenia II klasy ochronności lub o izolacji równoważnej polega na niedopuszczeniu do pojawienia się niebezpiecznego napięcia dotykowego na częściach przewodzących dostępnych w fabrycznie produkowanych urządzeniach elektrycznych. Osiąga się ten cel poprzez wyposażenie urządzenia w jedno z wymienionych niżej rozwiązań:

- izolację podwójną, składającą się z izolacji podstawowej i niezależnej od niej dodatkowej izolacji, równoważnej pod względem wytrzymałości elektrycznej i mechanicznej. Taką izolację ma np. sprzęt gospodarstwa domowego, narzędzia ręczne, itp.
- izolację wzmocnioną, która jest wprawdzie izolacją podstawową, lecz równoważną podwójnej pod względem wytrzymałości elektrycznej i mechanicznej,
- obudowy izolacyjne, które są osłonami wykonanymi z materiału izolacyjnego o odpowiedniej wytrzymałości mechanicznej i odporności na wpływy środowiska, zapewniającymi stopień ochrony co najmniej IP2X. W takich obudowach wykonany jest np. sprzęt instalacyjny (rozdzielnice skrzynkowe, wtyki, gniazda, itp.).

Ochrona przez zastosowanie izolowania stanowiska ma na celu zapobieżenie możliwości porażenia prądem elektrycznym w wyniku równoczesnego dotknięcia części przewodzących znajdujących się pod różnymi potencjalu, np. co może zdarzyć się przy uszkodzeniu izolacji podstawowej części czynnych. Działanie środka ochrony polega na izolowaniu od ziemi stanowiska pracy, na którym może się znaleźć człowiek, bądź tym samym urządzenia stanowiska, by nie było możliwe jednocześnie dotknięcie dwóch części przewodzących dostępnych lub jednej części przewodzącej dostępną i jakiejkolwiek części przewodzącej obcej.

Wymaganie to można spełnić przez:

- pokrycie lub wykonanie podłogi i ścian z materiału izolacyjnego niepodlegającego działaniu wilgoci oraz oddalenie od siebie części przewodzących dostępnych od części przewodzących obcych poza strefą zasięgu ręki,
- umieszczenie odpowiednich barier wykonanych w miarę możliwości z materiałów izolacyjnych, nieprzyłączonych do ziemi ani do części przewodzących dostępnych,
- izolowanie części przewodzących obcych.

Izolowanie stanowiska można stosować tam, gdzie użycie innych środków jest trudne do wykonania lub niemożliwe, np. nie można dostatecznie szybko wyłączyć zasilania lub zmniejszyć wartości napięcia dotykoowego. Znajduje ono zastosowanie najczęściej w specyficznych warunkach, np. w laboratoriach bądź w energetyce, gdzie podlega pewnym obstrzeñom.

Ochrona przez zastosowanie nie uziemionych połączeń wyrównawczych miejscowych polega na połączeniu ze sobą wszystkich jednocześnie dostępnych części przewodzących obcych i części przewodzących dostępnych odpowiednim przewodem wyrównawczym, co zapobiega pojawieniu się niebezpiecznych napięć dotykoowych. System nie uziemionych połączeń wyrównawczych miejscowych nie powinien mieć połączenia z ziemią.
przez łączone części przewodzące dostępne lub obce.

Ochrona przez **zastosowanie separacji elektrycznej** polega na zasilaniu (jednego lub więcej) chronionego urządzenia ze źródła separacyjnego, którym najczęściej jest odpowiedni transformator lub przetwornica. Części czynne obwodu separowanego nie mogą być połączone w żadnym punkcie z innym obwodem lub z ziemią. Ewentualne dotknięcie do elementów takiego obwodu przez człowieka nie powoduje porażenia, gdyż nie zamyka się droga dla prądu przenoszonego, co przesyka o skuteczności takiego rozwiązania. Jednakże dla poprawności działania tego środka obwód odbiorczy podlega licznom obostrzeniom - powinien być tak wykonany, aby ograniczyć możliwość zwarć doziemnych. Wartość napięcia w obwodzie wtórnym nie może być większa niż 500 V.

Równoczesna **ochrona przed dotykiem bezpośrednim i dotykiem pośrednim** polega na zasilaniu urządzeń bardzo niskim napięciem, nie stanowiącym zagrożenia dla człowieka, że spełniającego odpowiednie warunki źródła energii takiego, jak:

- transformator ochronny albo urządzenie równoważne (przetwornica)
- źródło elektrochemiczne (np. bateria akumulatorów).

Obwód ma być odseparowany od ziemi (SELV) lub uziemiony (PELV). Gniazda wtewczowe i wtyczki stosowane w obwodach o bardzo niskim napięciu nie mogą pasować do wtyczek i gniazd wtewczowych stosowanych w innych obwodach.

Stopień ochrony zapewniany przez obudowy (tzw. **kod IP**) jest miarą ochrony zapewnianej przez obudowy przed dostępem do znajdujących się w nich części niebezpiecznych, jak też przed wnikaniem obcych ciał stałych i/lub wody do wnętrza. Kod IP składa się z dwóch cyfr charakterystycznych, których podawanie jest obowiązkowe – ich znaczenie podano w poniższej tabeli. Jeżeli cyfra charakterystyczna nie jest określona lub jest nieistotna, jej miejsce w kodzie IP zajmuje znak X (np. IP20, IPX2, IPXXC).

Uwaga:

Możliwe jest również zastosowanie:

- nieobowiązującej litery dodatkowej (np. IP20C), informującej o stopniu ochrony osób przed dotykiem do niebezpiecznych części (jeśli nie jest określona, pomija się ją):
- nieobowiązującej litery uzupełniającej (np. IP21M) do różnych zastosowań (jeśli nie jest określona, pomija się ją):

Urządzenia elektryczne, z punktu widzenia ochrony przeciwporażeniowej, dzieli się na cztery **klasy ochronności**: 0, I, II i III.

![Klasy ochronności urządzeń elektrycznych](image)

Rysunek 9. Klasy ochronności urządzeń elektrycznych

1 - izolacja podstawowa, 2 - części czynne urządzenia, 3 - izolacja dodatkowa,
4 - przewód ochronny, 5 - przewody zasilające
Klasa 0 - urządzenia, w których zastosowano tylko izolację podstawową, nie mające zacisku uziemienia ochronnego i łączone z siatką za pomocą przewodu dwużyłowego bez żyły ochronnej, zakończonym wtykiem bez styku ochronnego (jeżeli jest to przewód ruchomy). Oznacza to, iż taki wyrób wyposażono tylko w ochronę przed dotykiem bezpośrednim, natomiast ochrona przed dotykiem pośrednim nie jest konstrukcyjnie przewidziana.

Klasa I - urządzenia, w których zastosowano izolację podstawową i wyposażono je w zaciski ochronne do łączenia części przewodzących dostępnych z przewodem ochronnym układu sieciowego, czyli przewidziane do podłączenia do sieci ochronnej. Zacisk ochronny powinien być oznaczony symbolem uziemienia ochronnego, który jest często utożsamiany z oznaczeniem I klasy ochronności.

Klasa II - urządzenia, w których zastosowano izolację podstawową oraz izolację dodatkową - wszystkie części przewodzące dostępne są, niezależnie od izolacji robiowej, oddzielone od części czynnych izolacją podwójną lub wzmocnioną, której konstrukcja uniemożliwia powstanie uszkodzenia groźnego porażenia w warunkach normalnego użytkowania podczas założonego czasu trwałości wyrobu. Urządzenia te nie potrzebują doprowadzenia przewodu ochronnego, nie mają więc zacisku ochronnego i są łączone z siatką za pomocą dwużyłowego przewodu (jednakże niektóre z nich mogą być wyposażone w wewnętrznzy zacisk ochronny, którego obecność wynika z innych wymagań). Ruchomy przewód powinien być zakończony wtyczką ze „ślepym” wgłębieniem na styk ochronny gniazda wtykowego lub płaskim wtykiem z kółkami stykowymi pokrytymi do połowy długości powłoką izolacyjną ze względu na bezpieczeństwo dotykowe.

Symbol graficzny II klasy ochronności pokazuje poniżej rysunek. Symbol przedstawiony na rys. d) należy umieszczać na zewnątrz i wewnątrz obudowy urządzenia elektrycznego, gdy spełnia ona warunki II klasy ochronności lub izolacji równoważnej.

Klasa III - urządzenia, które mogą być zasilane jedynie bardzo niskim napięciem bezpiecznym SELV (Safety Extra-Low Voltage) lub bardzo niskim napięciem ochronnym PELV (Protection Extra-Low Voltage), a więc o wartości nie większej niż 50 V prądu przemiennego i 120 V prądu stałego (napięcia zakresu I - tabela poniżej).

Symbol graficzny III klasy ochronności pokazuje rys. f) poniżej.

Rysunek 10. Symbole graficzne uziemienia i klas ochronności:

a) uziemienie (symbol ogólny),
b) uziemienie ochronne,
c) uziemienie ochronne, symbol spotykany,
d) symbol na urządzeniu - urządzenie spełniające warunki II klasy ochronności lub izolacji równoważnej,
e) oznaczenie II klasy ochronności,
f) oznaczenie III klasy ochronności

Cechy charakterystyczne wykonania urządzeń w poszczególnych klasach ochronności i zakres ich zastosowania:
Napięcia znamionowe prądu przemiennego do 1000 V i prądu stałego do 1500 V (zaliczane do tzw. niskiego napięcia) podzielono na następujące zakresy:

Uwolnianie porażonego spod działania prądu elektrycznego

W razie porażenia prądem elektrycznym najważniejszą czynnością jest szybkie uwolnienie porażonego spod działania prądu i udzielenie mu pierwszej pomocy. Osoba ratująca musi dokonać wyboru metody i sposobu uwolnienia porażonego pod działaniem prądu elektrycznego w zależności od warunków, w jakich nastąpiło porażenie, mając przy tym na uwadze własne bezpieczeństwo oraz potrzebę natychmiastowego uwolnienia porażonego.

Uwolnianie porażonego spod działania prądu elektrycznego o napięciu do 1 kV może się odbyć jedną z następujących metod:
Napięcie zasilające można wyłączyć poprzez:

- otwarcie właściwego łącznika lub usunięcie wkładki topikowej
- przecięcie przewodów od strony zasilania za pomocą narzędzi z izolowanymi rękojeściami, z zastosowaniem środków chroniących przed skutkami łuku elektrycznego (nie wolno stosować tego sposobu w pomieszczeniach zagrożonych wybuchem)
- zwarcie przewodów od strony zasilania - sposób ten należy stosować tylko w liniach napowietrznych. Zwraca się w ten sposób odpowiedniej zarzutki metalowej wcześniej podłączonej do uziemionej konstrukcji (sposób stosowany przez wykwalifikowanych monterów).

Uwalniając porażony spod działania prądu elektrycznego o napięciu do 1 kV, należy stosować następujący zasadniczy i dodatkowy sprzęt ochronny: rękawice gumowe, kalosze, dywaniki, drąże, itp. W razie braku sprzętu ochronnego można stosować jako materiał izolacyjny zastępczy: suche drewno, tworzywa sztuczne, suche materiały tekstylne. Nie wymaga się stosowania sprzętu ochronnego lub innych nie przewodzących materiałów tylko podczas wylaczania za pomocą łączników i bezpieczników.

Uwolnienia porażonego spod działania prądu elektrycznego o napięciu powyżej 1 kV można dokonać przy:

- wyłączeniu napięcia zasilającego za pomocą wyłącznika (po tej czynności sprawdzić brak napięcia i rozładować urządzenie, zachowując wymagane środki ostrożności)
- odciągnięciu porażonego od urządzeń będących pod napięciem tylko za pomocą odpowiedniego sprzętu ochronnego (mogą to wykonać tylko wykwalifikowani elektrycy).

Bezpośrednio po uwolnieniu porażonego spod napięcia należy:

- szybko zdać go wstępnie, żeby ocenić:
 - czy ma świadomość (przytomny lub nieprzytomny),
 - czy oddycha i jak (zwolniony lub przyspieszony oddech świadczy o złym stanie porażonego – norma: 10 – 24 oddechy na minutę),
 - czy pracuje serce i zachowana jest wydolność krążenia (bezpośrednio osłuchać okolicę serca na klatce piersiowej oraz zbadać tętno na tętnicy szyjnej). Jeżeli porażony krwawi, trzeba zatrzymać krawienie, zakładając opatrunek uciskowy,
 - czy nie jest uszkodzony odcinek szyjny kręgosłupa (po upadku z wysokości),

- zdecydować, jaki ma być zakres doraźnej pomocy i sposób jej udzielenia.

Sposób ratowania zależy od stanu porażonego:

- gdy jest przytomny, należy rozluźnić ubranie w okolicy szyi, klatki piersiowej i brzucha oraz ułożyć porażonego wygodnie na prawym boku. Należy wezwać lekarza, a jeżeli jest to niemożliwe, zaleca się przeniesienie lub przewieziecie porażonego do lekarza,
- gdy jest nieprzytomny i oddycha, należy ułożyć go na prawym boku (nie wolno na plecach!), okryć np. kocem, wezwać lekarza i cały czas obserwować, gdyż może nastąpić zatrzymanie oddechu,
- gdy jest nieprzytomny i nie oddycha, należy położyć go na plecach, porozpinać uciskające części garderoby, oczyścić jamę ustną z resztek jedzenia, zapewnić dopływ świeżego powietrza, rozpocząć sztuczne oddychanie i masaż serca, gdy nie jest wyczuwany puls, oraz wezwać pogotowie ratunkowe.
Razonego człowieka można jeszcze uratować, jeżeli udzieli mu się skutecznej pomocy przed upływem od 3 do 5 min, tzn. przed upływem czasu, jaki bez dopływu tlenu może przeżyć kora mózgowa.

Zagrożenia od wyładowań atmosferycznych i ochrona odgromowa

Wyładowanie atmosferyczne jest wyładowaniem elektrycznym wewnątrz chmury burzowej lub między chmurami bądź między chmurą a powierzchnią ziemi. Najczęściej występują wyładowania liniowe w postaci rozgałęzionej iskry o długości od kilku do kilkudziesięciu kilometrów. Rzadziej występują pioruny kuliste (w postaci świecącej kuli zjonizowanego gazu o średnicy kilkudziesięciu centymetrów) i pioruny łańcuchowe (w postaci łańcucha złożonego z oddzielnych punktów świetlnych). W Polsce, w ciągu roku mają miejsce średnio 2 wyładowania piorunowe na 1 km² powierzchni ziemi.

Wyładowania atmosferyczne generator impulse pola elektromagnetycznych, które są źródłem zakłóceń pracy urządzeń radiokomunikacyjnych i wielu urządzeń elektronicznych. Napięcia indukowane w metalowych przedmiotach (np. w pętach utworzonych przez przewody instalacji elektrycznych w budynkach) podczas wyładowań atmosferycznych mogą być powodem uszkodzeń urządzeń elektrycznych i porażenia użytkowników tych urządzeń.

Wyładowania elektryczne między chmurą a powierzchnią ziemi stanowią istotne zagrożenie dla ludzi i zwierząt, a także urządzeń elektrycznych i elektronicznych oraz budynków. Wartości szczytowe prądu wyładowań atmosferycznych są bardzo duże (50% osiąga wartości 30 kA, a największe - ponad 100 kA). Nawet w odległości kilkudziesięciu metrów od miejsca wyładowania mogą pojawić się napięcia dotykowe i krokowe o wartościach zagrażających bezpieczeństwu ludzi i zwierząt.

Zagrożenie pożarowe od wyładowań atmosferycznych może powstać bezpośrednio od prądu pioruna trafiającego w obiekt budowlany, od wyładowań w pobliskie obiekty (np. komin, drzewo, elektroenergetyczna linia napowietrznych itp.) oraz na skutek:

- przepięć występujących w instalacjach elektrycznych
- indukcji elektrostatycznej (zaindukowane na częściach obiektu ładunki podczas spływania do ziemi mogą wywołać iskrzenie).

Ochrona odgromowa polega na wykonaniu urządzenia piorunochronnego, którego zadaniem jest:

- przejęcie uderzenia pioruna, a więc niedopuszczenie do wyładowań w sam obiekt
- bezpieczne odprowadzenie prądu pioruna do ziemi
- niedopuszczenie do powstania napięć zagrażających bezpieczeństwu ludzi i zwierząt
- niedopuszczenie do wyładowań iskrowych mogących spowodować pożar i wybuch.

Urządzenie piorunochrone (instalacja odgromowa) składa się z następujących elementów:

- zwodu, przeznaczonego do bezpośredniego przyjmowania wyładowań atmosferycznych
- przewodów odprowadzających, łączących zwód z przewodem uziemiającym lub uziomem
- zacisku probierzecgo - rozłącznego połączenia w przewodzie odprowadzającym, umożliwiającego skontrolowanie poprawności funkcjonowania instalacji
- przewodów uziemiających, łączących przewód odprowadzający z uziomem
- uziomu
- ewentualnie połączeń wyrównawczych (ekwipotencjalizacyjnych), ochronników przeciwprzepięciowych.
Rysunek 11. **Urządzenia piorunochronne budynków**
 a), c) zwody pionowe, b), d) zwody poziome; 1 - zwody, 2 - przewody odprowadzające, 3 - uziom

Ochrony odgromowej nie wymagają:
- obiekty budowlane o wysokości mniejszej niż 25 m, usytuowane w strefie ochronnej sąsiadujących obiektów w zwartej zabudowie
- obiekty, dla których tzw. wskaźnik zagrożenia piorunowego jest odpowiednio mały.

Ochrona odgromowa podstawowa powinna być stosowana w takich obiektach, jak: budynki przemysłowe nie zagrożone wybuchem, obiekty o dużej wartości historycznej, materialnej i kulturowej, budynki użyteczności publicznej i przeznaczone dla ludzi o ograniczonej zdolności poruszania się, obiekty z materiałami łatwo zapalnymi oraz budynki wolno stojące, wyższe niż 15 m i o powierzchni większej niż 500 m2.

Ochrona odgromowa obostrzona powinna być stosowana w obiektach zagrożonych: wybuchem mieszanin wybuchowych gazów, par i ciężkie palnych oraz pyłów, a także pożarem.

Ochrona w wykonaniu specjalnym jest wymagana dla: kolejek linowych, mostów, dźwigów, stadionów, domków letniskowych, pól kempingowych.

Zagrożenia pożarowe od urządzeń elektrycznych

W Polsce urządzenia elektryczne są przyczyną około 9000 pożarów rocznie. Najwięcej pożarów wynika z wad urządzeń elektrycznych, pozostałe są skutkiem błędów w użytkowaniu tego rodzaju urządzeń. Najczęstsze przyczyny pożarów to:
- zły stan zestyków lub niewłaściwy dobór aparatów łączeniowych
- zły stan lub niewłaściwy dobórabezpieczeń przetęśoniowych (nadprądowych)
- zły stan izolacji lub niewłaściwy rodzaj izolacji elektrycznej
- nadmierne nagrzewanie się urządzeń elektrycznych podczas ich pracy
- błędne połączenia lub zwarcia w instalacjach (np. pomiędzy przewodami N i PE)
- występowanie luku elektrycznego
- brak ostrożności przy pracach spawalniczych
- niewłaściwe użytkowanie urządzeń grzejnych
- wewnętrznych zwarć w aparatach i urządzeniach zawierających palny olej mineralny
występowania przepięć pochodzenia atmosferycznego i łączeniowego.

Zły stan zestyków w aparatach łączeniowych lub w bezpiecznikach topikowych (luźne lub zanieczyszczone zestyki), źle dokręcone (i zanieczyszczone) końcówki przewodów do zacisków lub niewłaściwie połączone przewody aluminiowe (utlenione powierzchnie źle przewodzą) powodują, że w miejscach styku powstaje rezystancja „zestykowa” o dużej wartości. Podczas przepływu prądu na rezystancji tej wydziela się ciepło, następuje nagrzewanie się zestyku, co powoduje utlenianie się jego powierzchni i brak kontaktu elektrycznego. Wydzielające się przy tym coraz intensywniej ciepło i w wielu przypadkach występujące iskrzenie może doprowadzić do zapłonu izolacji lub innych materiałów.

Jeżeli zabezpieczenia przetęśeniowe, np. bezpieczniki topikowe lub wyzwalacze nadprądowe, mają zbyt duży prąd znamionowy w stosunku do obciążalności przewodów lub do mocy zasilanych urządzeń, które mają zabezpieczać, to mogą one być przyczyną powstania pożaru. Szczególnie niebezpieczna sytuacja występuje wtedy, gdy zamiast oryginalnej wkładki topikowej jest zastosowana wkładka „naprawiana” - kawałkiem drutu lub innym przypadkowym przedmiotem - stosowanie takich „rozwiązań” jest niedozwolone.

W takich przypadkach przy przeciążeniach, a w szczególności podczas zwarć, następuje silne nagrzanie materiału przewodzącego i izolacyjnego, ponieważ urządzenia zabezpieczające nie wyłączają zasilania w odpowiednio krótkim czasie.

Podczas pełnych zwarć metalicznych w instalacjach i urządzeniach elektrycznych zasilanie powinno z reguły zostać szybko wyłączone jest przez urządzenia zabezpieczające. Jednakże mogą powstać tzw. zwarcia niepełne, nazywane również rezystancyjnymi lub słaboprądowymi, na skutek uszkodzenia izolacji lub powstania ścieżki przewodzącej na powierzchni izolacji. Ma to miejsce nierzadko wskutek zmniejszenia się rezystancji izolacji w wyniku jej starzenia, zanieczyszczenia lub zawilgocenia. W miejscu uszkodzenia, wskutek wystąpienia prądu upływu, dochodzi do silnego nagrzania materiału izolacyjnego (mogącego prowadzić nawet do zwęglenia), mogącego być przyczyną pożaru - urządzenia zabezpieczające reagujące na wzrost wartości prądu w obwodzie nie mogą wyłączyć zasilania z powodu zbyt małej wartości prądu. Natomiast skuteczną ochronę zapewnić tutaj mogą zabezpieczenia różnicoprądowe, reagujące na pojawienie się upływu prądu z obwodu.

W urządzeniach elektroenergetycznych może powstać łuk elektryczny przy zwarciach oraz podczas błędnych czynności łączeniowych. Łuk elektryczny może spowodować pożar, a nawet wybuch, np. w przypadku zwarcia wewnętrznego w aparacie lub urządzeniu zawierającym palny olej mineralny.

Bardzo częstą przyczyną pożarów są wszelkiego rodzaju grzejniki elektryczne, nie posiadające automatycznej regulacji lub ograniczników temperatury oraz pozostawianie bez nadzoru w pobliżu łatwo palnych materiałów.

Przepięcia powstające samoistnie w sieciach elektroenergetycznych w chwili dokonywania łączeń powodują naprężenie elektryczne izolacji i możliwość jej przebicia, prowadzącego do powstania upływu prądu mogącego spowodować pożar. Podobne działanie mają przepięcia indukowane przez bliskie wyładowania atmosferyczne w czasie burzy. Najczęściej jednak dochodzi do uszkodzeń w elektronicznym wyposażeniu urządzeń gospodarstwa domowego lub maszyn.

Stosuje się następujące sposoby eliminacji i ograniczenia zagrożenia pożarowego od urządzeń elektrycznych:

- wszędzie tam, gdzie jest to wskazane, stosuje się wyłączniki różnicowoprądowe o znamionowym prądzie wyzwalającym do 500 mA, dobrze spełniające zadanie środka ochrony przeciwpożarowej
- wykonuje się instalację i urządzenia tak, aby nie podrzemywały i nie rozprzestrzeniały pożaru, niezależnie od tego, czy powstał on w nich samych, czy w ich pobliżu
- elementy instalacji i urządzeń elektrycznych stykające się z materiałami palnymi odpowiednio się dobiera lub umieszcza się w bezpiecznej odległości albo z użyciem niepalnych podkładów
- instaluje się przewody i kable z izolacją wykonaną z materiałów niepalnych i nie wydzielających chloru ani chlorowodoru w przypadku ich przegrzania; chlorowód z wodą tworzy kwas solny, szkodliwy dla człowieka oraz powodujący bardzo duże szkody wynikające z korozji obiektów budowlanych i urządzeń
- przy długich wiązkach przewodów i kabli zapewnia się ich zwiększoną odporność na działanie ognia, przez zastosowanie odpowiedniej izolacji lub pomalowanie specjalną farbą bądź przez natryskiwanie spienionego tworzywa
- wykonuje się ognioodporne przejścia przewodów przez przeciwpożarowe ściany i stropy
- w obiektach, w których łatwo jest wznieść pożar (np. w lakierniach, stolarniach, itp.), stosowane są tylko niezbędne urządzenia elektryczne i w odpowiednich osłonach
w obiektach, w których pożar zagraża życiu wielu osób lub mieniu o dużej wartości (np. hotele i inne budynki użyteczności publicznej, kopalnie, itp.), instalacje i urządzenia elektryczne wykonuje się z materiałów, które podczas pożaru wydzielają jak najmniej dymu i toksycznych gazów

- obiekty budowlane wyposaża się w instalacje piorunochronne
- instaluje się ochronniki przeciwprzepięciowe w instalacjach elektrycznych obiektów
- opraw lamp w „ciągach świetlnych” nie wykonuje się z materiałów łatwo palnych.

Zagrożenia wybuchowe od urządzeń elektrycznych

Wybuch jest to reakcja chemiczna polegająca na gwałtownym spalaniu gazów palnych, par cieczy palnych albo pyłów lub włókien w powietrzu. Podczas wybuchu wydziela się duża ilość ciepła i występuje fała uderzeniowa, wywołująca efekt akustyczny. Wybuch może wystąpić, gdy wytworzy się mieszanina wybuchowa, np. gazu palnego z powietrzem (z tlenem) w odpowiedniej proporcji obu składników **mieszanniny wybuchowej**. Do mieszanin wybuchowych zalicza się również mieszaniny powietrza i pyłów. Pyły niektórych materiałów niepalnych są palne (np. pył aluminiowy, pył cynowy) i mogą tworzyć mieszaniny wybuchowe. Wybuchem grożą, wzniesione podmuchem powietrza, chmury pyłowe, zawierające bardzo drobne ziarenka lub włókna.

Przestrzenie, w których są stosowane, produkowane lub przetwarzane substancje mogące wytworzyć z powietrzem (lub z innymi utleniaczami) mieszaniny wybuchowe, uważa się za zagrożone wybuchem. Ocena zagrożenia wybuchem pomieszczeń oraz przestrzeni zewnętrznych obejmuje wskazanie ich, a także wyznaczenie w nich odpowiednich **stref zagrożenia wybuchem**. Za dokonanie tej oceny są odpowiedzialni: inwestor jednostka projektująca obiekt budowlany, użytkownik, który decyduje o stosowanych urządzeniach i procesie technologicznym. Przy ocenie zagrożenia wybuchem uwzględnia się wszystkie czynniki i okoliczności mogące mieć wpływ na powstanie mieszaniny wybuchowej - rodzaj źródła zagrożenia, składników palnych, wentylacji, czas wydzielania, ciśnienie, temperaturę itp. Dla cieczy istotną rolę odgrywa temperatura zapłonu i temperatura pracy - mieszanina wybuchowa powstaje, gdy ciecz zostanie ogrzana do temperatury zapłonu.

Stosuje się następującą klasyfikację pomieszczeń i przestrzeni zewnętrznych zagrożonych wybuchem:

- **strefa ZO** - mieszanina wybuchowa gazów i par cieczy palnych występuje stale lub długotrwałe, np. w zbiornikach nad powierzchnią cieczy w zbiornikach, nie wentylowanych kanałach, itp.;
- **strefa Z1** - mieszanina wybuchowa gazów i par cieczy palnych występuje czasowo podczas normalnej pracy, np. wokół kominków wentylacyjnych, przy napełnianiu zbiorników, podczas stosowania cieczy palnych do malowania, mycia, czyszczenia, barwienia, klejenia, rozeńczania, itp.;
- **strefa Z2** - mieszanina wybuchowa gazów i par cieczy palnych występuje rzadko, krótkotrwałe i w niedużej objętości, np. wokół uszczelnień pomp, zawórów, przy nieszczelnościach instalacji technologicznych, itp.;
- **strefa Z10** - mieszanina wybuchowa pyłów lub włókien palnych z powietrzem występuje w postaci chmury, np. podczas obróbki niektórych materiałów przewodzących oraz podczas przesypiania, rozdrabniania, mielenia, czyszczenia i wibrowania czy wewnątrz urządzeń technologicznych;
- **strefa Z11** - mieszanina wybuchowa pyłów lub włókien z powietrzem może wystąpić w krótkim czasie na skutek przeciagu, utleniania, wiatru oraz działania innych sił powodujących unoszenie pyłu.

W obiektach zagrożonych wybuchem nie wolno stosować otwartego ognia. Wymagana jest ochrona odgromowa w wersji obostrzonej.

W strefach zagrożonych wybuchem instaluje się tylko te urządzenia elektryczne, które są absolutnie niezbędne. Urządzenia te powinny być tak wykonane, aby nie mogły przez zaiskrzenie lub silne nagrzanie zapalić mieszanniny wybuchowej - te, w których przewidziano środki konstrukcyjne wykluczające lub utrudniające możliwość zapłonu mieszanniny wybuchowej na zewnątrz tych urządzeń nazywa się **urządzeniami elektrycznymi w wykonaniu przeciwybuchowym**. Ich konstrukcja powinna być taka, aby temperatura ich zewnętrznych części (powierzchni) była niższa niż temperatura mieszanniny wybuchowej w otaczającej przestrzeni, zarówno podczas normalnej pracy, jak i w warunkach zakłóconych. Niezależnie od tego trzeba przeciwdziałać możliwości wytworzenia się mieszanniny wybuchowej lub ograniczać skutki wybuchu mieszanniny we wnętrzu urządzenia elektrycznego.

59
Urządzenia elektryczne w wykonaniu przeciwwybuchowym mogą być:

- **z osłoną ognioszczelną.** Do wnętrza obudowy mogą przedostawać się palne gazy i pary cieczy. W przypadku wybuchu obudowa wytrzymuje jego falę uderzeniową, a wydmuchiwane na zewnątrz gazy są ochłodzone w specjalnej szczelinie gaszącej tak, że nie mogą zapalić mieszaniny wybuchowej na zewnątrz urządzenia;
- **z osłoną piaskową.** Wolna przestrzeń we wnętrzu obudowy jest wypełniona suchym piaskiem. Dzięki temu nie może się wytworzyć mieszanina wybuchowa;
- **z osłoną cieczową.** We wnętrzu obudowy znajduje się zwykle olej, w którym są zanurzone części silnie nagrzewające się podczas pracy (np. transformatory) lub iskrzące (stycznik, łączniki);
- **z osłoną gazową z nadciśnieniem.** We wnętrzu obudowy jest wytworzona nadciśnienie gazu (np. powietrza, azotu) o odpowiedniej wartości;
- **hermetycznie pokryte powłoką izolacyjną** o odpowiedniej grubości i wytrzymałości na nagrzewanie oraz wpływ środowiska,
- **o budowie wzmocnionej.** Ochrona przeciwwybuchowa polega na „przewymiarowaniu” urządzeń pod względem elektrycznym, mechanicznym i termicznym w celu ograniczenia możliwość ich uszkodzenia;
- **urządzeniami iskrobezpiecznymi.** Są to urządzenia małej mocy, wykonane tak, żeby iskrzenie lub nagrzanie części zewnętrznych tych urządzeń nie spowodowało zapalenia mieszaniny wybuchowej także w przypadku ich uszkodzenia;
- **urządzeniami w wykonaniu specjalnym.**

Zagrożenia od elektryczności statycznej i ochrona przed nią

Elektryczność statyczna jest to zespół zjawisk towarzyszących pojawieniu się niezrównoważonego ładunku elektrycznego na materiałach o małej przewodności elektrycznej (dielektrykach, materiałach izolacyjnych) lub na odizolowanych od ziemi obiektach przewodzących (np. ciele człowieka, elementach urządzeń, itp.). Ładunki te wytwarzają wokół siebie pole elektrostatyczne o natężeniu tym większym, im większa jest wartość ładunku wytwarzającego to pole.

Elektryzowanie (elektryzacja) jest to wytwarzanie na danym ciele znajdującym się w polu elektrostatycznym nadmiaru ładunków elektrycznych jednego znaku. Występuje zwykle w warunkach zetknięcia czy zbliżenia i następującego po nim rozdzielenia dwóch nie naelektryzowanych ciał, przy czym mogą to być: ciała stałe, ciało stałe i ciecz, ciało stałe i gaz, ciecz i gaz bądź ciecz. Warunki takie zachodzą np. przy transporcie ciał (przesypaniu, przepompowywaniu, a także przy ślizganiu, toczeniu, uderzaniu, rozpraszaniu, przepływaniu), jak również miejsce ich mieszania. Możliwe też jest przy zmianach stanu skupienia, przy ich jonizacji, przypodziaływaniu indukcyjnym czy mechanicznym powodującym efekt piezoelektryczny, jak i w różnych procesach elektrochemicznych. Elektryzowanie może być ciągłe lub dorywcowe (okresowe).

Zagrożenia elektrycznością statyczną są spowodowane bezpośrednim oddziaływaniem pola elektrycznego wytwarzanego przez naelektryzowane obiekty lub oddziaływaniem wyładowań elektrostatycznych. Wyróżnia się trzy rodzaje zagrożeń:
Ładunki elektrostatyczne mogą powstawać na ludziach drogą kontaktową w czasie chodzenia, zdejmowania odzieży albo wykonywania czynności domowych lub zawodowych. Elektryzacja ludzi może również nastąpić przez indukcję. Ciało człowieka może gromadzić ładunki elektryczne, jeśli jest odpowiednio odizolowane od ziemi, np. przez nieprzewodzące obuwie lub podłogę. Energia związana z naładowaniem elektrostatycznym człowieka wynosi od kilku do kilkudziesięciu mJ.

Oddziaływanie elektryczności statycznej na ludzi jest następujące:

- przebywanie pod wpływem pola elektrostatycznego przez dłuższy czas ma ujemny wpływ na stan zdrowia i samopoczucie ludzi
- wyładowania elektrostatyczne powstają przy zbliżeniu do uziemionego obiektu; poza niemilą lub groźną, wyładowania mogą prowadzić do urazów mechanicznych przy występujących odruchach. Wyładowanie zwykle jest słabo odczuwalne lub nieodczuwalne, a przy wyższych poziomach napięcia i energii (o energii ok. 250 mJ) może spowodować wystąpienie ciężkiego szoku. Ponieważ wartości te znacznie przekraczają minimalne energie zapłonu wielu mieszanin wybuchowych, zachodzi też niebezpieczeństwo inicjacji wybuchu przy wyładowaniu z człowieka w warunkach zagrożenia wybuchowego lub pożarowego. Przykładowo, wartości minimalnej energii zapłonu wynoszą: 0,011 mJ dla acetylenu i wodoru, a 0,15 mJ dla oparów benzyny.

Silne pola elektrostatyczne mogą powodować zakłócenia w działaniu aparatury kontrolno-pomiarowej, komputerów oraz we wszelkich urządzeniach elektronicznych zawierających elementy półprzewodnikowe. Wyładowania elektryczności statycznej powodują także do trwałych uszkodzeń elementów półprzewodnikowych. Może je powodować sam człowiek, kiedy jest naładowany i dotyka tych elementów, np. w trakcie produkcji czy przy montażu.

Zagrożenia wywołane elektrostatyką są podstawowym zagrożeniem w wielu procesach przemysłowych, np. takich jak: przewijanie, walcowanie, kalandrowanie, powłakowanie oraz przy przesuwaniu napędu przez paski klinowe i pasy transmisji, tarcie odzieży, toczeniu się kół pojazdów, itp.

Elektryzowanie się cieczy następuje podczas takich operacji, jak: przepływ przez rurociągi, napełnianie i opróżnianie zbiorników - w szczególności połączone z rozbryzgiwaniem, falowanie cieczy w zbiorniku będącym w ruchu, rozpylanie, mieszanie, filtrowanie, itp. Natężenie prądu elektryzacji wzrasta ze wzrostem prędkości przepływu średnicy rurociągu oraz stopnia szorstkości powierzchni wewnętrznej.

Gazy, pary lub ich mieszaniny elektryzują się tylko wtedy, kiedy znajdują się w nich zanieczyszczenia w postaci cząsteczek gazowych lub ciekłych, takie jak: rdza, pył, kropelki wody, skroplony gaz, mgła itp. Elektryzowanie następuje w wyniku kontaktowania się tych cząstek ze sobą, ze ściankami naczynia, przewodu, itp., bądź rozrywania kropek. Strumień naelektryzowanego gazu może również indukować ładunek na elementach przewodzących.

W przypadkach, gdy wskutek naelektryzowania gazu może wystąpić zagrożenie, należy przed wszystkim uzyskać stabilne prądu elektryzacji, które mogą znaleźć się na drodze strumienia gazu, oraz zapewnić ekwipotencjalizację (wyrównanie potencjałów) pomiędzy nimi.

Środki ochrony przed elektrycznością statyczną powinny eliminować możliwość elektryzacji obiektów lub, jeżeli to niemożliwe, zapewniać bezpieczne odprowadzanie ładunków elektrycznych. W celu odprowadzania ładunków elektryczności statycznej z metalowych i przewodzących części i urządzeń stosuje się uziemienia i połączenia wyrównawcze. Uziemianie powinno zapewnić spływ ładunków bez wystąpienia zagrożenia wybuchowego lub pożarowego.

Czasem zdarza się, że uziemienie nie spełnia roli odprowadzania ładunków elektryostatycznych do ziemi, np. jeżeli spływ ładunków występuje tylko z warstwy cieczy przylegającej do ścianek zbiornika.

Antystatyzacja polega na zmianie właściwości materiałów i substancji w celu zmniejszenia ich elektryzacji i gromadzenia się ładunków. Wprowadzenie do danej substancji odpowiedniej domieszki (tzw. antystatyka) lub naniesienie antystatyka na powierzchnię materiału (wykładziny antyelektrostatyczne) powoduje zwiększenie skrośnej lub powierzchniowej przewodności elektrycznej. Preparacja antystatyczna objętościowa jest stosowana zwykle do tkanin, a także w przemyśle. Przy produkcji, przetwarzaniu i stosowaniu nieprzewodzących materiałów stałych oraz folii, płytek, itp. stosuje się preparację antystatyczną powierzchniową. Powszechnie stosowana jest antystatyzacja tkain kain i diezdy.

Antystatyzację tkanin uzyskuje się przez odpowiedni dobór struktury włókien miesznan w tworzyw sztucznych z bawełną lub linią.
Antystatyzację okresową otrzymuje się przez preparację powierzchniową włókien w procesie produkcji. Po kilkunastu praniach (co najmniej 10) właściwości antystatyczne okresowe zanikają i tkaniny podlegają znowu elektryzacji. Powszechna jest również antystatyzacja doraźna, uzyskiwana przez płukanie tkanin i odzieży.

Zwiększenie wilgotności powietrza jest skutecznym środkiem ochrony przed gromadzeniem się ładunków elektrostatycznych tylko na tych materiałach, które wykazują właściwości powierzchniowego adsorbowania wody. Dla materiałów niehigroskopijnych, np. większości typowych tworzyw sztucznych, ten środek ochrony jest nieskuteczny. Zwiększenie wilgotności względnej powietrza (co najmniej do 70%) dokonuje się poprzez nawilżanie pomieszczeń lub stanowisk produkcyjnych (nawilżanie miejscowe).

Neutralizatory ładunku służy do eliminacji ładunków elektrostatycznych występujących na powierzchniach płaskich lub walcowych, pasów napędowych itp. poprzez ich neutralizację zjonizowanym powietrzem. Neutralizatory ładunku mogą działać w sposób bezpośredni, wytwarzając jony w bezpośredniej bliskości deelektryzowanej powierzchni, lub z wymuszonym nadmuchem zjonizowanego powietrza.

Ekranowanie elektrostatyczne polega na umieszczaniu uziemionej siatki metalowej na powierzchniach izolacyjnych w celu zmniejszenia natężenia pola elektrycznego na stanowisku pracy.

Zmiany procesów technologicznych umożliwiające eliminację zagrożeń to:

- zmniejszenie szybkości procesów, np. zmniejszenie szybkości przepływu cieczy
- zwiększenie pojemności obiektów względem ziemi
- korekta procesów w celu pozbycia się źródeł generacji ładunków, np. eliminacja rozpryskiwania cieczy, pylesienia materiałów sypkich
- prowadzenie procesów w atmosferach obojętnych, np. nie zagrożonych wybuchem
- dobór tworzyw na wykładziny, konstrukcje maszyn i urządzeń produkcyjnych w celu zmniejszenia elektryzacji stykających się z nimi obiektów oraz materiałów.

Pola elektromagnetyczne

Wprowadzenie

Pola elektromagnetyczne są bardzo zróżnicowanym czynnikiem środowiskowym - od pól statycznych (elektrostatycznych i magnetostatycznych), małej i wielkiej częstotliwości do promieniowania mikrofalowego (o częstotliwościach poniżej 300 GHz). W środowisku występują zarówno pola sinusoidalnie zmienne w czasie jak i modulowane w bardzo różne sposób. Do scharakteryzowania pola elektromagnetycznego jako fizycznego czynnika środowiska pracy stosowane są następujące parametry:

- częstotliwość pól sinusoidalnie zmiennych w czasie (w Hz) lub opis zmienności w czasie pól niesinusoidalnych,
- natężenie pól elektrycznych (w V/m),
- natężenie pól magnetycznych (w A/m) lub indukcja magnetyczna (w T),
- gęstość mocy promieniowania (w W/m²),
- czas ekspozycji pracownika.

Sposób i skutki oddziaływania pól elektromagnetycznych, zarówno bezpośrednio na ciało człowieka jak i na materiałne elementy środowiska pracy, zależą od ich częstotliwości i natężenia. Pola elektromagnetyczne w przeciwieństwie do wielu fizycznych czynników środowiska, jak np. hałas, nie są z reguły rejestrowane przez zmysły człowieka, dlatego niemożliwe jest intuicyjne dostosowanie sposobu postępowania człowieka do stopnia zagrożenia. Pola elektromagnetyczne o różnych częstotliwościach znajdują liczne zastosowania praktyczne w przemyśle, służbie zdrowia, telekomunikacji i życiu codziennym.
a) linie elektromagnetyczne wysokiego napięcia
b) anteny nadawcze telefonii komórkowej

Rysunek 12. Przykładowe źródła pola elektromagnetycznego

Energia pól elektromagnetycznych absorbowana bezpośrednio w organizmie powoduje powstawanie w nim elektrycznych prądów indukowanych oraz podgrzewanie tkanek. Może to być przyczyną niepożądanych efektów biologicznych i w konsekwencji zmian stanu zdrowia (czasowego i trwałego). Mimo wieloletnich badań w celu ustalenia czy wieloletnia, chroniczna ekspozycja na pola o natężeniach nie wywołujących istotnych zmian krótkoterminowych może wpływać na stan zdrowia ludzi, wciąż nie ma ostatecznych rozstrzygnięć w tej sprawie.

Rysunek 13. Symulacje numeryczne prądu indukowanego w ciele człowieka znajdującego się w polu magnetycznym o polaryzacji poziomej
Oprócz różnorodnego bezpośredniego oddziaływania na organizm pracownika, pole elektromagnetyczne może stwarzać także zagrożenie dla ludzi poprzez oddziaływanie na infrastrukturę techniczną, ponieważ odbiór energii pola elektromagnetycznego przez urządzenia może być przyczyną m.in.:

- zakłóceń pracy automatycznych urządzeń sterujących i elektronicznej aparatury medycznej (w tym elektrostymulatorów serca oraz innych elektronicznych implantów medycznych),
- detonacji urządzeń elektrowybuchowych (detonatorów),
- pożarów i eksplozji związanych z zapaleniem się materiałów łatwopalnych od iskier wywoływanych przez pola indukowane lub ładunki elektrostatyczne.

Oddziaływanie pól elektromagnetycznych może powodować występowanie niepożądanych skutków. Z tego powodu wprowadzono okresową kontrolę warunków ekspozycji oraz ograniczenia ekspozycji:

- ogółu ludności
- pracowników
- infrastruktury technicznej.

Szczególne znaczenie ma to odnośnie pracowników, którzy z racji wykonywania czynności zawodowych przebywają w obszarze występowania silnych pól elektromagnetycznych. W miarę możliwości powinny być stosowane techniczne i organizacyjne metody ograniczania ekspozycji, m.in. ekranowanie elektromagnetyczne i oznakowanie obszarów występowania silnych pól elektromagnetycznych.

Rysunek 14. Przykład zastosowania siatki do zekranowania przed polem elektrycznym przejścia w rozdzielni elektroenergetycznej 110 kV.

a) wg PN-74/T-06260

Strefa niebezpieczna Strefa zagrożenia Strefa pośrednia Strefa bezpieczna Źródło pola elektromagnetycznego

wg PN-93/N-01256/03
Silne pola magnetyczne
Promieniowanie niejonizujące

b)

zakaz wstępu dla osób z elektrostymulatorami serca
zakaz wnoszenia przedmiotów z metali magnetycznych

Rysunek 15. Znaki ostrzegawcze dla stref ochronnych i źródeł pola elektromagnetycznego wg PN-74/T-06260 i PN-93/N-01256/03
(a) oraz znaki nieznormalizowane (b) zalecane do stosowania

Promieniowanie optyczne

Część widma elektromagnetycznego o długościach fali ł 10⁻⁸ – 10⁻³ m (od 10 nm do 1 mm) nazywamy promieniowaniem optycznym. Promieniowanie optyczne dzieli się na promieniowanie widzialne (światło) oraz niewidzialne – promieniowanie nadfioletowe i podczerwone.

Fizyczną, chemiczną lub biologiczną przemianę wywołaną oddziaływaniem promieniowania optycznego na materię nazywamy skutkiem promieniowania optycznego. Gdy promieniowanie optyczne wywołuje w materii przemiany chemiczne, używane jest określenie skutek aktywny, natomiast w wypadku zmian w tkankach organizmów żywych mówimy o skutek biologicznym tego promieniowania. Miarą skutku biologicznego promieniowania optycznego może być np. ilość substancji (wyrażona w mg, µg, molach itp.) powstałą w wyniku reakcji fotochemicznej spowodowanej przez określoną dawkę promieniowania. Danemu rodzajowi skutku biologicznego odpowiada charakterystyczny, właściwy mu, względny rozkład widmowy skuteczności biologicznej promieniowania optycznego (krzywa skuteczności biologicznej promieniowania optycznego).

Człowiek może być nadmiernie narażony na działanie naturalnego promieniowania słonecznego lub promieniowania źródeł sztucznych, których liczba szybko rośnie wraz z rozwojem technologicznym. Sztuczne źródła promieniowania optycznego można podzielić na nielaserowe (klasyczne) oraz laserowe.

Elektryczne źródła nielaserowego promieniowania optycznego, oprócz zastosowania do celów oświetleniowych, są używane w wielu dziedzinach działalności człowieka. Na przykład nisko- lub wysokopędne lampy rtęciowe UV oraz wysokopędne lampy metalohalogenkowe UV stosuje się do dezynfekcji (laboratorium, przemysł farmaceutyczny i spożywczy, salony fryzjerskie itd.), fototerapii (np. leczenie łuszczycy lub żółtaczki), w poligrafii (kopipowanie, wykonywanie matryc sitodrukowych, utwardzanie fotopolimerów, suszenie farb i lakierów), w przemyśle meblowym (suszenie farb i lakierów), w przemyśle elektronicznym (kasowniki pamięci EPROM), w salonach kosmetycznych (do opalania) itd. Niskopędne ręczone promienniki UV są instalowane jako źródło promieniowania w testeraх do
banknotów, lampach owadobójczych itp. Lampy ksenonowe stosuje się w urządzeniach poligraficznych, projekcyjnych i spektrofotometrach. Źródła promieniowania najnowszej generacji, takie jak lampy indukcyjne emitujące silne promieniowanie nadfioletowe i niebieskie, są montowane w projektorach poligraficznych. Specjalne żarówki oraz promieniiki kwarcowe będące źródłami podczerwieni są m.in. stosowane w łakierniach i farbiarniach do suszenia lakieru, w przemyśle spożywczym i w gastronomii, w hodowli zwierząt, w urządzeniach terapeutycznych. Źródłami nielaserowego promieniowania optycznego często spotykanymi w środowisku pracy są takie procesy technologiczne, jak: spawanie łukowe i gazowe, cięcie łukiem plazmowym, cięcie tlenowe, natryskowanie cieplne, elektrodrążenie, zgrzewanie, wszelkiego rodzaju procesy hutnicze (wytop stali, żeliwa, metali nieżelaznych, szkła) itp. Promieniowanie towarzyszące tym procesom jest zwykle bardzo intensywne.

Skutki działania promieniowania optycznego na organizm człowieka

Skutek biologiczny promieniowania optycznego zależy przede wszystkim od rozkładu widmowego i ilości pochłoniętego promieniowania, czasu i częstotliwości ekspozycji oraz rodzaju eksponowanej tkanki. Ilość promieniowania pochłoniętego przez tkankę jest zależna od jej napromienienia i współczynnika odbicia. Promieniowanie nadfioletowe moŜe być przyczyną zarówno korzystnych jak i szkodliwych skutków dla organizmu człowieka.

Promieniowaniem nadfioletowym (UV) nazywa się promieniowanie optyczne o długości fali \(l \leq 400 \text{ nm} \) mieszczącej się w zakresie 10 ÷ 400 nm. Wyróżnia się następujące zakresy nadfioletu w zależności od długości fali \(l \):

- **UV-A** (nadfiolet bliski) - 315 ÷ 400 nm
- **UV-B** (nadfiolet średni) - 280 ÷ 315 nm
- **UV-C** (nadfiolet daleki) - 100 ÷ 280 nm

Energia fotonów promieniowania nadfioletowego zawiera się w przedziale 3,3 ÷ 125 eV. Promieniowanie nadfioletowe o energii mniejszej niż około 12 eV (o długości fali powyŜej 104 nm) nie powoduje jonizacji powietrza i tkanki biologicznej, moŜe natomiast wywoływać reakcje fotochemiczne w tkance biologicznej. Promieniowanie nadfioletowe może być przyczyną zarówno korzystnych jak i szkodliwych skutków dla organizmu człowieka.

Korzystny wpływ nadfioletu polega przede wszystkim na działaniu przeciwbólowym. W ośrodkach medycznych na rzecz leków 7-dehydrocholesterol ulega przekształceniu w witaminę D3, która odgrywa ważną rolę w wapniowo-żelazowejaniu. Inne korzystne skutki działania promieniowania UV na organizm człowieka to np. wzrost jego odporności, niszczenie drobnoustrojów czy przyśpieszenie gojenia ran i owrzodzeń.

Głębokość wnikania promieniowania nadfioletowego w skórę jest wprost proporcjonalna do długości fali (największa dla \(l = 400 \text{ nm} \) i wynosi przeciętnie kilka mikrometrów. Najczęściej spotykanym objawem nadmierniej ekspozycji skóry na promieniowanie nadfioletowe jest rumień. Z medycznego punktu widzenia rumień (erytema) jest objawem procesu zapalnego skóry. Pojawia się on zazwyczaj w miejscu napromienienia, po okresie utajenia trwającym do kilku godzin, zależnie od dawki i długości fali l. Wzrost dawki promieniowania powoduje skrócenie okresu utajenia. Nadfiolet z zakresu UV-C wywołuje rumień o jasnym odcieniu, po okresie utajenia trwającym średni 2-3 godziny. Rumień ten ustępuje stosunkowo szybko, a zwiększanie dawki promieniowania nie powoduje duŜego wzrostu jego intensywności. Promieniowanie z zakresu UV-B wytwarza rumień intensywniejszy i trwający dłużej, przy czym wzrost dawki promieniowania znacznie zwiększa jego intensywność. Skuteczność wywoływania rumienia przez UV-A jest od 1000 do 10000 razy mniejsza niŜ w wypadku UV-B czy UV-C. Do tej pory, pomimo licznych badań, nie ustalono jednolitego rozkładu widmowego (krzywej widmowej) skuteczności wywoływania rumienia skóry przez promieniowanie nadfioletowe (tzw. krzywa widmowa skuteczności erytemalnej). Poszczególne kraje i organizacje określiły swoje własne krzywe różniące się między sobą. Wielokrotne
narazenie skóry na promieniowanie nadfioletowe o dużym natężeniu może także być przyczyną złuszczania się naskórka, powstania przebarwień na skórze (pojawiają się piegi, znamiona, plamy) oraz powstawania zmian przednowotworowych i nowotworowych. W krajach leżących w strefach o dużym nasłonecznieniu oraz wśród osób wykonujących prace na wolnym powietrzu stwierdzono większą zapadalność na nowotwory skóry.

Jest to spowodowane zwiększoną ekspozycją ludzi na nadfiolet zawarty w promieniowaniu słonecznym. Proces powstawania nowotworów skóry pod wpływem ekspozycji na długotrwałe działanie nadfioletu wiąże się z pochłanianiem tego promieniowania przez DNA. Pod wpływem nadfioletu w DNA powstają dimery pirimidyn i właśnie temu zjawisku przypisuje się główną rolę w procesie inicjowania zmian nowotworowych. Rozkład widmowy skuteczności rakotwórczej nadfioletu dla skóry człowieka nie został do tej pory ustalony. Na podstawie wyników badań eksperymentalnych przeprowadzanych na zwierzębach przyjmuje się, że najbardziej skuteczne pod względem wywoływania nowotworów jest promieniowanie o długościach fali złożonych do 300 nm. Oprócz wymienionych tu zagrożeń intensywne promieniowanie nadfioletowe (np. laserowe) może powodować oparzenia skóry.

Promieniowanie o długości fali poniżej 290 nm jest silnie pochłaniane przez rogówkę i spojówkę oka. Absorpcja promieniowania z tego zakresu powoduje stany zapalne spojówki i rogówki, a w przypadku ekspozycji oka na promieniowanie laserowe może dodatkowo wystąpić uszkodzenie rogówki. Stany zapalne spojówki i rogówki objawiają się zaczarowaniem, swędzeniem i pieczeniem spojówek, wzmożonym izarowaniem, światłowstrzętem, uczuciem obcego ciała w oku, spazmem powiek, upośledzeniem widzenia. Objawy zapalenia rogówki i spojówki objawiają się na podstawie wielu zjawisk: malacją, przesuszaniem spojówek, upośledzeniem widzenia. Objawy zapalenia rogówki i spojówki objawiają się na podstawie wielu zjawisk: malacją, przesuszaniem spojówek, upośledzeniem widzenia. Objawy zapalenia rogówki i spojówki objawiają się na podstawie wielu zjawisk: malacją, przesuszaniem spojówek, upośledzeniem widzenia. Objawy zapalenia rogówki i spojówki objawiają się na podstawie wielu zjawisk: malacją, przesuszaniem spojówek, upośledzeniem widzenia. Objawy zapalenia rogówki i spojówki objawiają się na podstawie wielu zjawisk: malacją, przesuszaniem spojówek, upośledzeniem widzenia.

Nadfiolet z zakresu powyżej 290 nm jest przepuszczany przez rogówkę i ciecz wodnistą oka, dociera do soczewki i jest przez nią pochłany. Długotrwałe narażenie soczewki na intensywne promieniowanie nadfioletowe o długościach fali powyżej 290 nm może doprowadzić do jej trwałego zmuśnięcia, czyli zaćmy (tzw. zaćma fotochemiczna). Na podstawie badań na zwierzębach przyjmuje się, że największa skuteczność widmowa tworzenia zaćmy występuje w paśmie 290-320 nm z maksimum dla l = 300 nm. Do siatkówki oka dociera mniej niż 1% promieniowania nadfioletowego o długości fali powyżej 300 nm. Promieniowanie to może być przyczyną schorzeń lub uszkodzeń siatkówki o charakterze fotochemicznym.

Obecnie panuje pogląd, że skutki ekspozycji na podczerwień zależą głównie od natężenia napromienienia oraz w mniejszym stopniu od czasu ekspozycji i długości fali. Dla czasów ekspozycji większych niż 0,1 s bardzo ważną rolę odgrywa przepływ krwi i odpowiedzianie ciepła drogą przewodniczącą. W związku z tym zakłada się, że jeżeli w ciągu krótkiego czasu ekspozycji (od kilku do kilkunastu sekund) nie wystąpiło uszkodzenie termiczne tkanki dobrze chłodzonych, to nie wystąpi ono także dla dłuższych czasów ekspozycji. Nie dotyczy to tkank paleo słabo chłodzonych, takich jak np. soczewka oka.
Głębokość wnikania promieniowania podczerwonego w skórę jest odwrotnie proporcjonalna do długości fali. Przenikalność promieniowania z pasma IR-C (podczerwień daleka) wynosi kilka mikrometrów. Promieniowanie to jest w większości absorbowane w powierzchniowych warstwach skóry, co przy długotrwałej ekspozycji i dużym natężeniu napromieniowania może doprowadzić do jej przegrzania lub oparzenia. Reakcją skóry na nadmierną dawkę podczerwieni może być wystąpienie tzw. rumienia cieplnego charakteryzującego się rozlanym zaczerwienieniem obszaru poddanego działaniu promieniowania. Rumień utrzymuje się zazwyczaj 1-2 godziny po zakończeniu ekspozycji. Największą zdolnością wnikania (na głębokość 1 ÷ 3 cm) charakteryzuje się promieniowanie z zakresu podczerwieni bliskiej IR-A, które dociera do głębszej położonych warstw tkanki skórnej oraz do tkanki podskórnej. Mimo że obszary skóry położone głębiej są dobrze ukrwione i przepływająca krew odprowadza nadmiar energii cieplnej, długotrwałe działanie tego typu może powodować zwiększone obciążenie cieplne organizmu. Ze względu na mniejszą absorpcję w powierzchniowych warstwach skóry promieniowanie z pasma IR-A wywołuje rumień cieplny po dłuższym czasie ekspozycji niż podczerwień daleka (przy tym samym poziomie natężenia napromieniowania). Oprócz natężenia napromieniowania, składu widmowego promieniowania i czasu ekspozycji, do czynników, które mają wpływ na reakcję skóry na podczerwień, zalicza się także wielkość napromieniowanej powierzchni (małe obszary skóry, zwłaszcza poniżej 1 cm², wymagają większego natężenia napromieniowania do uzyskania takiego samego przyrostu temperatury) oraz cechy osobowe charakteryzujące poszczególnych ludzi, takie jak: stan skóry, jej wilgotność, grubość poszczególnych warstw itp. Głównym mechanizmem obronnym organizmu w razie nadmiernego wzrostu temperatury skóry jest odczuwanie bólu. Według wyników badań nad skutkami ekspozycji skóry na podczerwień odczuwanie bólu pojawia się, gdy temperatura skóry osiągnie wartości z zakresu 41 ÷ 53 °C, a objawy oparzenia I stopnia występują zazwyczaj po przekroczeniu około 50 °C. Ponieważ receptory ciepła znajdujące się w skórze dostatecznie wcześniej sygnalizują niebezpieczeństwo przekroczenia dozwolonej temperatury, to do poparzeń skóry spowodowanych podczerwieńem może dojść głównie w przypadku ekspozycji na promieniowanie laserowe.

Oczy są narażone na szkodliwe działanie podczerwieni w większym stopniu niż skóra. Gałka oczna w zasadzie nie ma mechanizmów (receptorów ciepła) ostrzegających przed tym rodzajem promieniowania. Podczerwień jest najsilniej pochłaniany przez rogówkę: całkowicie w pasmie IRźC i częściowo w pasmie IRźB (powyżej 2500 nm). W rogówce znajdują się receptory wywołujące ból, gdy jej temperatura osiągnie około 47 °C. Natomiast oparzenie rogówki może wystąpić już w temperaturze o kilka stopni niższe. Dlatego ekspozycja oka na promieniowanie o dużym natężeniu może prowadzić do poparzenia rogówki.

Do soczewki oka dociera przede wszystkim promieniowanie z pasma podczerwieni bliskiej IR-A oraz częściowo z pasma IR-B (o długościach fali poniżej 2400 nm). Gdy poziom natężenia promieniowania jest duży, wówczas następuje przegrzanie soczewki ułatwione brakiem naczyń krwionośnych, poprzez które ciepło mogłoby być odprowadzone. Wzrost temperatury soczewki następuje, według jednej z teorii, głównie na skutek bezpośredniej absorbpcji promieniowania przez soczewkę, a według innej - przede wszystkim na skutek pośredniego przekazywania ciepła soczewce przez tęczówkę. W wyniku przegrzania może dojść do zmian chemicznych związanych z soczewką, co objawia się powstawaniem zmętnienia soczewki, charakterystycznego dla „zaćmy”. Zaćma jest nieodwracalną i często spotykaną chorobą oczu powstającą na skutek działania podczerwieni. Najczęściej występuje ona u pracowników zatrudnionych w przemysle hutniczym, którzy są narażeni na intensywne działanie podczerwieni (stąd często użycie określenia "zaćma hutnicza"). Zaćma występuje w licznych odmianach i objawia się zazwyczaj po wieloletnim okresie narażenia. Średni wiek pracowników, u których stwierdzono zaćmę powstającą na skutek ekspozycji oczu na podczerwień na stanowiskach pracy, wynosi w Polsce 46 ÷ 60 lat (przy okresie narażenia 20 ÷ 30 lat).

Długotrwała ekspozycja na promieniowanie podczerwone może również wywoływać stany zapalne tęczówki i spojówek, wysuszanie powiek i rogówek oraz zapalenie brzegów powiek.

Promieniowanie podczerwone z zakresu IR-A (780 ÷ 1400 nm) dociera do siatkówki oka, co przy duzym natężeniu napromieniowania może prowadzić do jej uszkodzenia termicznego. Widmowa skuteczność termiczną Rl bliskiej podczerwieni w wypadku siatkówki oka wynosi Rl = 10[700 - l] / 500 dla długości fali 780 ÷ 1050 nm oraz Rl = 0,2 dla l zawartego w zakresie 1050 ÷ 1400 nm.

Warto dodać, że promieniowanie podczerwone (podobnie jak nadfioletowe) może również mieć korzystny wpływ na organizm człowieka i dlatego jest stosowane w medycynie do zabiegów terapeutycznych.

Sposoby ochrony człowieka przed nadmiernym promieniowaniem optycznym w środowisku pracy
Podstawowe sposoby ochrony człowieka przed promieniowaniem optycznym w środowisku pracy to:

- uwzględnienie zagrożenia promieniowaniem na etapie projektowania oraz urządzania stanowisk pracy
- automatyzacja produkcji
- szkolenie pracowników na temat zagrożenia i ochrony przed promieniowaniem
- systematyczna kontrola zagrożenia promieniowaniem (np. przez wykonywanie pomiarów kontrolnych)
- odpowiednia organizacja pracy na stanowiskach
- dobór i stosowanie właściwych środków ochrony zbiorowej
- dobór i stosowanie właściwych środków ochrony indywidualnej
- badania lekarskie pracowników zatrudnionych na stanowiskach, na których występuje nadmierna ekspozycja na promieniowanie optyczne.

Oświetlenie

Światło jest promieniowaniem widzialnym (elektromagnetycznym) zdolnym do wywoływania bezpośrednio wrażeń wzrokowych, z których wynika widzenie. Przyjmuje się, że promieniowanie widzialne zawiera się w przedziale 380 ÷ 780 nm.

Strumień świetlny (F) jest to ta część promieniowania optycznego emitowanego przez źródło światła, którą widzi oko ludzkie w jednostce czasu. Na przykład żarówka emituje oprócz promieniowania widzialnego - widoczne dla oka, dużą ilość promieniowania podczerwonego, czyli cieplnego. Podobnie jest z żarówką halogenową, która oprócz promieniowania widzialnego emituje zarówno promieniowanie podczerwone, jak i nadfioletowe - oba niewidoczne dla oka. Jednostką strumienia świetlnego jest lumen, lm.

Światłość (I) jest to gęstość kątowa strumienia świetlnego źródła światła w danym kierunku. Światłość charakteryzuje rozsył strumienia świetlnego w przestrzeni, czyli ilość strumienia świetlnego wysyłanego przez źródło światła w niewielkim kącie bryłowym otaczającym określony kierunek. Światłość wyznacza się ze wzoru: I = F/w, gdzie w - jest to kąt brylowy, który na powierzchni kuli o promieniu r, zakreślany z wierzchołka tego kąta ogranicza pole S = r². Jednostką światłości jest kandela cd = lm/sr, gdzie: sr - steradian to jednostka kąta bryłowego.

Natężenie oświetlenia (E) jest to gęstość powierzchniowa strumienia świetlnego padającego na daną płaszczyznę, czyli jest to stosunek strumienia świetlnego padającego na płaszczyznę do jej pola powierzchni E = F/S. Jednostką natężenia oświetlenia jest luks (lx), gdzie: lx = lm/m².
Luminancja (L) jest to fizyczna miara jaskrawości. Zależy ona od natężenia oświetlenia na obserwowanym obiekcie, właściwości odbiciowych powierzchni obiektu (barwa, stopień chropowatości) oraz od jego pola pozornej powierzchni świecącej. Pozorna powierzchnia świecąca jest to wielkość postrzegana przez obserwatora powierzchni płaszczyzny świecącej uzależniona od kierunku jej obserwacji. Pozorna powierzchnia świecąca jest to zarówno płaszczyzna świecąca w sposób bezpośredni – oprawa oświetleniowa, jak i płaszczyzna świecąca w sposób pośredni, np. ściana, przez odbicie światła.
Gdy kąt pomiędzy prostopadłą do powierzchni świecącej a kierunkiem obserwacji wynosi 0°, pole pozornej powierzchni świecącej równe jest polu powierzchni świecącej. W miarę wzrostu ww. kąta, pole pozornej powierzchni świecącej zmniejsza się zgodnie z kosinusem tego kąta, aż do kąta 90°, kiedy wynosi zero. Luminancja wyrażana jest wzorem: \(L = rE / p \). Jednostką luminancji jest cd/m².

Kontrast jaskrawości (k) oznacza subiektywne oszacowanie różnicy w wyglądzie dwu części pola widzenia, oglądanych równocześnie lub kolejno. W znaczeniu obiektywnym kontrast jest najczęściej określany wzorem: \(k = L1 / L2 \), gdzie: \(L1, L2 \) – luminancje, a \(L1 \) jest większe od \(L2 \).

Zasady i rodzaje oświetlenia

Światło na stanowisku pracy i w jego otoczeniu wpływa bezpośrednio na szybkość i pewność widzenia oraz określa w jaki sposób widzimy formy, sylwetki, barwę i właściwości powierzchni przedmiotów tam występujących. Aby praca wzrokowa była optymalna, stanowisko pracy oraz pomieszczenie, w którym się ono znajduje, muszą być tak oświetlone, aby występowała wygoda widzenia. Występuje ona wtedy, gdy spełnione są co najmniej trzy następujące warunki:

- zdolność rozróżniania szczegółów jest pełna
- spoostrzeganie jest sprawne, pozbawione ryzyka dla człowieka
- spostrzeganie nie prowadzi do odczucia pewnej przykrości, niewygody, nadmiernego zmęczenia, a przeciwnie jest połączone z pewną przyjemnością.

Wystąpienie wygody widzenia zależy od czynników określających cechy ilościowe i jakościowe oświetlenia oraz od wrażliwości osobniczej.

Zasady oświetlenia dzielą się na trzy podstawowe grupy:

- zasady fizjologiczne
- zasady estetyczne
- zasady ekonomiczne.

Najważniejszymi, z punktu widzenia narządu wzroku, są zasady fizjologiczne. Oświetlenie wnętrz powinno powinno zapewnić:
Ze względu na sposób rozmieszczania opraw oświetleniowych we wnętrzu wyróżnia się trzy podstawowe rodzaje oświetlenia:

- oświetlenie ogólne - równomierne oświetlenie pewnego obszaru bez uwzględnienia szczególnych wymagań dotyczących oświetlenia niektórych jego części
- oświetlenie miejscowe - dodatkowe oświetlenie przedmiotu pracy wzrokowej, z uwzględnieniem szczególnych potrzeb oświetleniowych, w celu zwiększenia natężenia oświetlenia, uwidocznienia szczegółów itp., załączane niezależnie od oświetlenia ogólnego
- oświetlenie złożone - oświetlenie składające się z oświetlenia ogólnego i oświetlenia miejscowego.

Rysunek 19. Poglądowe przedstawienie rodzajów oświetlenia

Wybór odpowiedniego rodzaju oświetlenia powinien być uzależniony od wymaganego poziomu natężenia oświetlenia. Dla poziomów natężenia oświetlenia poniżej 200 lx zaleca się stosowanie oświetlenia ogólnego. Dla poziomów natężenia oświetlenia z przedziału 200 ÷ 750 lx zaleca się stosowanie oświetlenia ogólnego jako wyłącznego rodzaju oświetlenia, wtedy gdy występuje potrzeba jednakowego lub prawie jednakowego oświetlenia danej przestrzeni. Stosuje się je tam, gdzie nie jest znane rozmieszczenie stanowisk pracy i wtedy, gdy są one rozmieszczone równomiernie w całym pomieszczeniu, a praca wzrokowa na nich wykonywana jest taka sama lub o podobnej trudności (tzn. praca wymagająca rozmówiania szczegółów o podobnej wielkości). Natomiast dla poziomów natężenia oświetlenia powyżej 750 lx zaleca się stosowanie oświetlenia złożonego (ogólne oraz miejscowe).

Sposoby oświetlania miejscowego
Sposoby oświetlania miejscowego polegają na doborze oprawy oświetlenia miejscowego ze względu na jej średnią luminancję i wielkość powierzchni świecącej oraz na odpowiednim jej umieszczeniu w stosunku do oka obserwatora. Umieszczenie to wynika z charakterystyki odbiciowej przedmiotu pracy wzrokowej oraz wymagań dotyczących oświetlenia. Charakterystyka przedmiotu pracy wzrokowej zależy od jego wartości współczynników odbicia i przepuszczania oraz od faktury jego powierzchni (powierzchnia z załamaniami, pęknięciami, rysami, wzerami itp.), która wpływa na charakterystykę odbicia światła (kierunkowe, rozproszone, kierunkowo-rozproszone).

W praktyce przyjmuje się cztery charakterystyczne sposoby oświetlenia miejscowego, polegające na zróżnicowaniu umieszczania opraw:
układ a doświetlający zapewnia równomierne doświetlenie (bez cieni) pola pracy wzrokowej lub uwidocznień szczegółów o małym kontraście. Kierunek padania strumienia światelnego w tym układzie nie odgrywa znaczącej roli

układ b odbijający do oczu zapewnia uwidocznień szczegółu przez postrzeganie odbicia od przedmiotu pracy wzrokowej o zróżnicowanych właściwościach odbijających światło. Układ ten umożliwia dostrzeżenie np. pęknięć, znaków zrobionych punktakiem na matowym materiale, podziałek na suwniarcie itp.

układ c odbijający kierunkowo umożliwia ujawnienie nierównomierności powierzchni przez zauważenie cieni powstałych od tych nierównomierności na skutek skierowania światła pod małym kątem względem powierzchni obserwowanego przedmiotu. Promienie odbite kierunkowo nie trafiają do oka

układ d ujawniający szczegóły w świetle przechodzącym (z oprawą rozpraszającą) umożliwia prześwietlenie przedmiotu, np. obserwacja światłoczułych materiałów, pęknięć w materiale lub ciągłości ścieżek na płytcie drukowanej.

Rysunek 20. Układy umieszczania opraw oświetlenia miejscowego

Odpowiedni układ umieszczania i typu oprawy oświetlenia miejscowego dobiera się po uwzględnieniu występujących na stanowisku pracy warunków pracy wzrokowej (np. kontrast i charakterystyka odbiciowa przedmiotu pracy wzrokowej) oraz zasad oświetlania.

Parametry oświetlenia

Poziom natężenia oświetlenia

Określenie właściwego poziomu natężenia oświetlenia we wnętrzu lub na stanowisku pracy jest jednym z podstawowych problemów techniki oświetlania. Poziom natężenia oświetlenia potrzebny do wykonywania określonej pracy wzrokowej dobiega się w zależności od:

- stopnia trudności pracy wzrokowej
- wielkości poznanej szczególku pracy wzrokowej.

O stopniu trudności pracy wzrokowej decyduje:

- współczynnik odbicia przedmiotu pracy
- wielkość kontrastu jaskrawości szczegółu przedmiotu z jego tłem.

Im mniejszy jest współczynnik odbicia (tzn. bliższy zeru) i kontrast szczegółu z tłem, tym większy jest stopień trudności pracy wzrokowej.

Z kryterium minimalnego poziomu natężenia oświetlenia wynika, że natężenie oświetlenia na poziomej
płaszczyźnie roboczej, które można zaakceptować w pomieszczeniach, w których ludzie przebywają przez długi czas, niezależnie od tego, jakie jest wykonywane zadanie wzrokowe, powinni wynosić 200 lx.

Przy stopniu trudności pracy wzrokowej większym od przeciętnego, przy utrudnieniach w wykonywaniu pracy, przy wymaganiu zapewnienia dużej wygody widzenia, jak również, gdy pracownikami są w większości osoby powyżej 40 lat należy przyjmować poziom natężenia oświetlenia o stopień wyższy niż poziom minimalny dopuszczalny (podany w normie PN-84/Eź02033). Poziomy natężenia oświetlenia zostały przyjęte wg następującego szeregu: 10; 20; 50; 75; 100; 150; 200; 300; 500; 750; 1 000; 2 000; 3 000 i 5 000 lx.

Równomierność oświetlenia

Równomierność oświetlenia (d) na danej płaszczyźnie wyznacza się jako iloraz najmniejszej zmierzonej wartości natężenia oświetlenia występującej na danej płaszczyźnie (E_{min}) do średniego natężenia oświetlenia na tej płaszczyźnie (E_{śr}): d = E_{min} / E_{śr}, gdzie:

E_{śr} = (E₁ + E₂ + ... + Eₙ) / n; n - liczba punktów pomiarowych;
E₁ ÷ Eₙ - wyniki pomiarów w kolejnych punktach pomiarowych.

Dla czynności ciągłych przyjmuje się, że równomierność oświetlenia na płaszczyźnie roboczej powinna wynosić co najmniej 0,65.

Dla czynności dorywczych oraz na klatkach schodowych i korytarzach przyjmuje się, że równomierność oświetlenia powinna wynosić co najmniej 0,4.

Rodzaje luminacji

Oświetlenie

Oświetlenie nazywa się pewien przebieg (stan) procesu widzenia, przy którym występuje odczucie niewygody lub zmniejszenie zdolności rozpoznawania przedmiotów lub czegoś innego, w wyniku niewłaściwego rozkładu luminancji otoczenia lub niewłaściwego zakresu luminancji albo nadmiernych kontrastów w przestrzeni lub w czasie.

Z punktu widzenia występujących skutków wyróżnia się następujące rodzaje oświetlenia:

- **przeszkadzające** - zmniejszające zdolność widzenia na bardzo krótki, ale zauważalny czas i bez wywoływania uczucia przykrości. Nadmierna ilość światła docierająca do oku ulega rozproszeniu w ośrodkach optycznych oku, co powoduje nakładanie się tzw. luminancji zamglenia na prawidłowodno zogniskowany obraz przedmiotu obserwowanego. Jako przykład tego rodzaju oświetlenia można przytoczyć sytuację, gdy po krótkotrwałej obserwacji źarnika zarzyni i próbowaliśmy odczytać się nieprawidłowo nakładającą się na obserwowany obraz; przeszkadzające oświetlenie jest silne, ostatecznie nie pozwala na prawidłowe-oświetlenie przeszkadzające oświetlenie jest silne, i nie pozwala na prawidłowe rozpoznawanie przedmiotów; przeszkadzające oświetlenie jest silne, i nie pozwala na prawidłowe rozpoznawanie przedmiotów;

- **przykrze** - wywołujące uczucie przykrości, niewygody, rozdrażnienia oraz wpływające na brak koncentracji bez zmniejszenia zdolności widzenia. Natychmiast po usunięciu przyczyny oświetlenia niewygoda ustępuje. Oświetlenie to zależy od: luminancji poszczególnych źródeł oświetlających, luminancji tła, na którym znajdują się źródła, wielkości kątowych tych źródeł, ich położenia względem obserwatora oraz ich liczby w polu widzenia. Jako przykład takiego rodzaju oświetlenia można przytoczyć sytuację, gdy podczas obserwacji otworu w polu widzenia, oświetlenie jest silne, tzw. “mroczków” (jest to luminancja zamglenia nakładająca się na obserwowany obraz) przez pewien krótki, lecz zauważalny okres, można na przykład takiego rodzaju oświetlenia jest silne, i nie pozwala na prawidłowe rozpoznawanie przedmiotów;

- **osłepiające** - oświetlenie tak silne, że przez pewien zauważalny czas zdaje przedmiot nie może być spostrzegany. Jest to skrajny przypadek oświetlenia przeszkadzającego. Przykładem tego rodzaju oświetlenia może być sytuacja, gdy podczas przebywania nocą na nieoświetlonej drodze nagle w polu widzenia pojawi się samochód jadący z naprzeciwka;
więczonymi światlami drogowymi. W wyniku ośnienia zanika zdolność spostrzegania na pewien krótki, ale zauważalny czas.

Rysunek 21. Zjawisko ośnienia

Z punktu widzenia warunków powstawania rozróżniamy następujące rodzaje ośnienia:

- ośnienie bezpośrednie, które jest spowodowane przez jaskrawy przedmiot występujący w tym samym lub prawie tym samym kierunku co przedmiot obserwowany
- ośnienie pośrednie, które jest spowodowane przez jaskrawy przedmiot występujący w innym kierunku niż przedmiot obserwowany
- ośnienie odbiciowe, które powodują kierunkowe odbicia jaskrawych przedmiotów.

Ochrona przed ośnieniem

Największą luminancją we wnętrzu wytworzoną przez urządzenia oświetleniowe jest ta, którą powodują same źródła światła. Zwykle luminancje te są zbyt duże, aby pozwolić na używanie źródeł światła bez odpowiedniego ograniczenia ich jaskrawości w kierunku oczu pracownika. Z tego powodu źródła światła są umieszczane w oprawach, których jednym z zadań jest ograniczanie luminancji w kierunkach chronionych do akceptowalnego poziomu. Ograniczanie ośnienia bezpośredniego lub pośredniego oznacza ograniczenie luminancji opraw oświetleniowych w strefie powyżej kąta 45°, mierząc od pionu. Kąt ten jest to kąt widzenia środka świetlnego oprawy położonej najdalej od obserwatora. W przypadku pomieszczeń z komputerami strefa ograniczenia luminancji najczęściej występuje powyżej kąta 50°; 55° lub 60°, mierząc od pionu. Im wartość tego kąta jest większa, tym strefa ograniczenia luminancji jest mniejsza i występuje większe prawdopodobieństwo wystąpienia ośnienia bezpośredniego.

Rysunek 22. Strefa ograniczania luminancji
Ograniczenie olśnienia jest związane z odpowiednim doborem oprawy oświetleniowej, a decydują o tym elementy optyczne kształtujące jej bryłę fotometryczną, np. klosz mleczny, odbytnik, raster (różny kształt oraz rodzaj powierzchni).

W praktyce oświetlania wnętrz olśnienie przykre jest większym problemem niż olśnienie przeszkadzające. Uczucie przykrości ma tendencję do wzrostu wraz z upływem czasu i powoduje uczucie stresu i zmęczenia. Środki podjęte do ograniczenia olśnienia przykrego niwelują olśnienie przeszkadzające.

Na stopień olśnienia przykrego nie wpływa tylko luminancja w polu widzenia pracownika, lecz zależy on także od rodzaju wykonywanej czynności. Im bardziej wymagające jest zadanie wzrokowe i im większa jest potrzeba koncentracji, tym silniejsze będzie uczucie przykrości. W tych sytuacjach, gdy pracownik musi się przemieszczać, wykonując określone czynności, doświadczana przykrość będzie mniejsza niż gdy pracownik wykonuje pracę bez wykonywania znaczących ruchów. W tym drugim przypadku największe zagrożenie olśnieniem jest powodowane przez krańcowe oprawy oświetleniowe, szczególnie w pomieszczeniach wydłużonych. Dlatego też w pomieszczeniach wydłużonych, w celu minimalizowania olśnienia, należy unikać opraw z kloszami mlecznymi (oprócz takich opraw umieszczonych np. w kasetonach sufitowych, zapewniających odpowiednie kąty ochrony).

Olśnienia odbiciowe oraz odbicia obniżające kontrast mogą być zminimalizowane przez:

- rozplanowanie systemu oświetlenia lub rozlokowanie miejsc pracy w taki sposób, aby żadna oprawa oświetleniowa nie była umieszczona nad miejscem wykonywania zadania wzrokowego
- zwiększenie strumienia światelnego padającego z kierunków bocznych na zadanie wzrokowe pod kątem ostrym, różnym od kąta obserwacji
- stosowanie opraw mających dużą, dolną powierzchnię świecącą i małą luminancję
- projektowanie stanowisk pracy i materiałów do pracy o matowych powierzchniach w celu zmniejszenia skutków odbić.

Tętnienie i zmiany aperiodyczne światła

Zmienny w czasie strumień światła wysyłany przez elektryczne źródło światła wynika praktycznie z częstotliwości prądu zasilającego to źródło. Fakt zmian strumienia światelnego w rtym zmian prądu przemiennego, od wartości minimalnej do maksymalnej, nazwano tętnieniem światła. Wykorzystywane obecnie do ogólnych celów oświetleniowych źródła światła są zasilane prądem przemiennym o częstotliwości 50 Hz. Wówczas częstotliwość zmian światła wynosząca 100 Hz jest niedostrzegalna dla naszego wzroku i widzimy to światło w sposób ciągły. Tętnienie światła występuje w żarówkach w różnym stopniu, zależnie od grubości włókna wolframowego. Jednak problem ten jest bardziej uciążliwy, wówczas gdy stosujemy lampy wyładowcze, przede wszystkim świetlówki.

W przypadku oświetlania stanowisk pracy z wirującymi elementami czy źródłami wyładowczymi (świetlówki, rtęciówki, sodówki) może wystąpić efekt stroboskopowy, czyli pozorny bezruch tych elementów.

Działania ograniczające lub eliminujące występowanie tego efektu oraz tętnienia światła polegają między innymi na: zasilaniu sąsiednich opraw z różnych faz, stosowaniu układu antystroboskopowego w oprawach oświetleniowych lub elektronicznego układu stabilizująco-zapłonowego (podwyższającego częstotliwość zasilania samych źródeł światła).

W przypadkuźródła światła jest zaliczane jedynie do czynników uciążliwych, niemniej jednak wymaga ograniczenia, ponieważ może niekorzystnie wpływać na samopoczucie człowieka.

Źródła światła

Skuteczność świetlna (hz) jest to stosunek strumienia świetlnego emitowanego przez źródło światła do pobieranej przez nie mocy. Jednostką skuteczności świetlnej jest lm/W.
Trwałość użyteczna jest określana najczęściej czasem świecenia źródła światła do chwili, kiedy wartość jego strumienia świetlnego zmniejszy się o 20 ÷ 30% w stosunku do wartości początkowej.

Barwa światła i oddawanie barw
Wygląd określonego przedmiotu może ulegać zmianom w warunkach oświetlania różnymi typami źródeł światła. Dlatego też ważny jest dobór odpowiedniego stopnia oddawania barw do danego rodzaju pracy. Właściwości oddawania barw przez źródła światła charakteryzuje się tzw. ogólnym wskaźnikiem oddawania barw (R_a). Jest on miarą stopnia zgodności wrażenia barwy przedmiotu oświetlonego danym źródłem światła z wrażeniem barwy tego samego przedmiotu oświetlonego odniesionym źródłem światła w określonych warunkach. Maksymalna możliwa wartość tego wskaźnika wynosi 100. Przyjmuje się ją dla światła dziennego i większości źródeł źarowych. Wartości zbliżone do 100 charakteryzują najlepsze właściwości oddawania barw. Im większe jest wymaganie dotyczące właściwego postrzegania barw, jak np. w przemyśle poligraficznym, tekstylnym, tym wskaźnik oddawania barw powinien być większy.

W zależności od wykonywanych czynności zaleca się stosowanie źródeł światła o wskaźniku oddawania barw R_a:

- bardzo dużym, R_a większe bądź równe 90, dla stanowisk pracy, na których rozróżnianie barw ma zasadnicze znaczenie, jak np. kontrola barwy, przemysł tekstylny i poligraficzny, sklepy
- dużym, gdy R_a jest mniejsze od 90 i większe bądź równe 80 dla biór, przemysłu tekstylnego, precyzyjnego, dla sal szkolnych i wykładowych
- średnim oraz ewentualnie małym, dla R_a mniejszego od 80 i większego bądź równego 40, dla innych prac, jak np. walcownie, kuźnie, magazyny, kotłownie, odlewnie, młynach oraz wszędzie tam, gdzie rozróżnianie barw nie ma zasadniczego lub istotnego znaczenia.

We wnętrzach, w których ludzie pracują albo przebywają dłuższy czas, zaleca się stosowanie źródła światła o wskaźniku oddawania barw większym od 80.

Barwę światła określa się za pomocą tzw. temperatury barwowej (T_c) i podaje się ją w kelwinach, K. Źródła, które emitują białą barwę światła, można podzielić, w zależności od ich temperatury barwowej, na trzy grupy: ciepłobiałą (ciepła), neutralną (chłodnobielą) i dzienną (zimna). Wraz ze zwiększaniem wartości średniej wymaganego natężenia oświetlenia powinna wzrastać temperatura barwowa stosowanego źródła światła.

Dla poziomów natężenia oświetlenia poniżej 300 lx temperatura barwowa powinna być niższa od 3 300 K, co odpowiada ciepłobiałej barwie światła. Dla poziomów 300 ÷ 750 lx temperatura barwowa powinna zawierać się w przedziale 3 300 ÷ 5 000 K, co odpowiada neutralnej barwie światła, natomiast dla poziomów natężenia powyżej 750 lx temperatura barwowa powinna być wyższa od 5 000 K, co odpowiada dzienniej barwie światła.

Rysunek 23. Wrażenie w oddawaniu barw
Oprawy oświetleniowe

Oprawa oświetleniowa jest to urządzenie służące do rozsyłu, filtracji i przekształcania strumienia światła jednego lub kilku źródeł światła. Zawiera ono wszystkie elementy niezbędne do podtrzymania, mocowania i zabezpieczenia tych źródeł oraz w razie potrzeby obwody pomocnicze wraz z elementami potrzebnymi do ich podłączenia do sieci zasilającej.

Skuteczność świetlna (hop) jest to stosunek całkowitego strumienia światła wysyłanego przez oprawę oświetleniową do całkowitej mocy pobieranej przez tę oprawę (dla źródeł wyładowczych - moc pobierana przez źródło i osprzęt elektryczny). Jednostką skuteczności świetlnej jest lm/W.

Krzywa światłości

Krzywa światłości jest to krzywa odzwierciedlająca rozkład światłości oprawy przedstawiony dla charakterystycznej płaszczyzny płaszczyzny przekroju danej oprawy, którymi są płaszczyzny przechodzące przez wzdłużny (C90) i poprzeczny (C0) przekrój osiowy oprawy - dla opraw wydłużonych (np. do świetlówek) lub jedna krzywa dla opraw obrotowoosymetrycznych (np. do żarówek, niektórych lamp wysokoprężnych). Na foliogramie przedstawiono przykłady charakterystycznych rozsyłków światłości opraw oświetleniowych. Produenci opraw podają krzywe światłości w formie wykreślnej w przeliczeniu na znamionowy strumień światlny F0 = 1 000 lm źródła (źródeł) światła lub w formie tabelarycznej.

Oprawy oświetleniowe

Oprawa oświetleniowa jest to urządzenie służące do rozsyłu, filtracji i przekształcania strumienia światła jednego lub kilku źródeł światła. Zawiera ono wszystkie elementy niezbędne do podtrzymania, mocowania i zabezpieczenia tych źródeł oraz w razie potrzeby obwody pomocnicze wraz z elementami potrzebnymi do ich podłączenia do sieci zasilającej.

Skuteczność świetlna (hop) jest to stosunek całkowitego strumienia światła wysyłanego przez oprawę oświetleniową do całkowitej mocy pobieranej przez tę oprawę (dla źródeł wyładowczych - moc pobierana przez źródło i osprzęt elektryczny). Jednostką skuteczności świetlnej jest lm/W.

Krzywa światłości

Krzywa światłości jest to krzywa odzwierciedlająca rozkład światłości oprawy przedstawiony dla charakterystycznej płaszczyzny płaszczyzny przekroju danej oprawy, którymi są płaszczyzny przechodzące przez wzdłużny (C90) i poprzeczny (C0) przekrój osiowy oprawy - dla opraw wydłużonych (np. do świetlówek) lub jedna krzywa dla opraw obrotowoosymetrycznych (np. do żarówek, niektórych lamp wysokoprężnych). Na foliogramie przedstawiono przykłady charakterystycznych rozsyłków światłości opraw oświetleniowych. Produenci opraw podają krzywe światłości w formie wykreślnej w przeliczeniu na znamionowy strumień światlny F0 = 1 000 lm źródła (źródeł) światła lub w formie tabelarycznej.
Kąt ochrony (d) jest to kąt płaski wyznaczony w pionowej płaszczyźnie przechodzącej przez środek świetlny oprawy, określający strefę, w której przedziałach oko obserwatora jest chronione przed bezpośrednim promieniowaniem źródła światła (patrz rys. w rozdziale „Ochrona przed oświetleniem”).

Oświetlenie pomieszczeń z komputerami

Praca przy monitorach jest związana z wystąpieniem co najmniej dwóch różnych zadań wzrokowych:

- czytanie drukowanego tekstu na dokumencie i znaków na klawiaturze
- czytanie znaków na monitorze (znaki mogą być jasne na ciemnym tle lub ciemne na jasnym tle).

Projektowanie oświetlenia do pracy przy komputerze wymaga więc stosowania oświetlenia zapewniającego dobre warunki widzenia dla obu ww. zadań wzrokowych. Wysoki poziom natężenia oświetlenia jest niezbędny na płaszczyźnie klawiatury i stołu, natomiast w płaszczyźnie ekranu jest niekorzystny ze względu na obniżenie kontrastu jaskrawości znaków i tła na ekranie.

W celu ograniczenia oświetlenia odbiciowego od opraw należy stosować właściwie rozmieszczone oprawy oświetleniowe z odpowiednim rastrem (parabolicznym, metalizowanym) oraz odpowiednio rozmieszczone stanowiska pracy. Do oświetlania stanowisk pracy z komputerami luminancja opraw powinna być nie większa niż 200 cd/m² dla kąta wypromieniowania oprawy powyżej 45 ÷ 55° (licząc od pionu) w płaszczyźnie wzdłużnej i poprzecznej oprawy. Wymagania powyższe spełniają oprawy o roszyle światłości kształtowanym przez głębokie zwierciadlane odbłyśniki paraboliczne oraz metalizowane, paraboliczne rastry, tzw. darklight. Oprawy oświetleniowe o takich rozsyłach światłości są korzystne ze względu na następujące zalety:

- uwydajnione kierunki promieniowania leżą w płaszczyźnie prostopadłej do osi obserwacji, co ogranicza wpływ składowej kierunkowej odbicia strumienia świetlnego od przedmiotów znajdujących się na biurku, utrudniającej rozróżnianie szczegółów
- na stanowiskach pracy zlokalizowanych między dwoma liniami opraw świetlówkowych uzyskuje się większe natężenie oświetlenia niż pod oprawami w przejściach komunikacyjnych
- nieobrotowa bryła fotometryczna umożliwia intensywniejsze oświetlenie stanowisk pracy z boku w porównaniu z innymi kierunkami.
Wymagania dotyczące oświetlenia

W celu uzyskania efektywnego oświetlenia (również energooszczędnego) należy wziąć pod uwagę poniższe zasady:

- w urządzeniu oświetleniowym należy dążyć do użycia najbardziej wydajnych źródeł światła
- źródła światła należy eksploatować w warunkach znamionowych (nie obniżając ich strumienia świetlnego)
- sprzęt oświetleniowy należy utrzymywać w dobrym stanie
- w czasie pracy w ciągu dnia należy w pełni wykorzystać światło dzienne (np. przez ustawienie stanowisk pracy w pobliżu okien), a w przypadku konieczności doświetlania stanowisk pracy światłem elektrycznym, należy włączać tylko niezbędne sekcje oświetlenia.

Na jakość oświetlenia w danym pomieszczeniu, którą ma zapewnić określony system oświetleniowy, mają wpływ następujące parametry:

- poziom natężenia oświetlenia i jego równomierność
- rozkład luminancji
- ograniczenie ośnienia przykrego
- barwa światła (temperatura barwowa) i wskaźnik oddawania barw źródeł światła
- tętnienie światła
Mikroklimat
Wymiana ciepła między człowiekiem a jego otoczeniem

Między człowiekiem a środowiskiem zachodzi nieustanna wymiana ciepła. Odbywa się ona czterema drogami: przez przewodzenie, konwekcję, promieniowanie oraz odparowywanie potu. Tego rodzaju przepływy ciepła zależą od charakterystyk fizycznych otoczenia takich, jak: temperatura powietrza, średnia temperatura promieniowania, ciśnienie pary wodnej i prędkość ruchu powietrza. Ze względu na to, że do prawidłowego działania wszystkich funkcji organizmu jest konieczne utrzymanie stałej ciepłoty ciała (homeotermia), organizm człowieka dysponuje mechanizmami, które pozwalają na utrzymanie niezbędnej ilości ciepła lub też odprowadzenie jego nadmiaru. Mechanizmy te nie zawsze mogą podać obciążeniom termicznym, na jakie narażony jest organizm ze strony środowiska. Konsekwencją takiego stanu może być wzrost temperatury wewnętrznej ciała lub jej spadek w stosunku do wartości średniej, która w stanie równowagi cieplnej organizmu wynosi 37 ± 0,5 °C.

Pierwszą reakcją człowieka na stymulację termiczną jest behawioralne unikanie nadmiernych strat lub gromadzenia się ciepła wewnątrz ciała. Reakcje te polegają na doborze odzieży i klimatyzowaniu pomieszczeń. Gdy te działania nie są wystarczające w sposób odruchowy uruchamiane są reakcje fizjologiczne. Kontrola fizjologicznych zmian jest inicjowana przez odśrodkowe kanały nerwowe, zarówno somatyczne, jak i autonomiczne.

Ciepło jest produkowane we wszystkich tkankach organizmu, ale jest tracone do otoczenia tylko z tkanek, które kontaktują się z otoczeniem - głównie ze skóry, a w mniejszym stopniu także z dróg oddechowych. Przenoszenie ciepła wewnątrz ciała zachodzi z miejsc produkcji ciepła do pozostałych części ciała oraz z wnętrz ciała do skóry. Wewnątrz ciała ciepło jest transportowane dwoma sposobami: przez przewodnictwo tkankowe i konwekcyjnie przez krew.

Utrata ciepła z organizmu następuje kilkoma drogami. Pierwsza to przewodnictwo oraz parowanie potu z powierzchni skóry do otaczającego powietrza i konwekcja z dróg oddechowych wspomagana konwekcją przepływu powietrza w płucach. Drugim kanałem utraty ciepła jest promieniowanie z gołej skóry, a w pewnym zakresie zachodzące też między warstwami odzieży. Ciepło tracone jest również przez wydalanie moczu i defekację, choć procesy te nie powodują ochładzania ciała, tak, jak dzieje się to w wyniku parowania potu lub przez wilgotną odzież.

W celu utrzymania stałej temperatury wewnętrznej w organizmie powinna być zachowywana równowaga między produkcją a utratą ciepła do otoczenia. Jeżeli suma energii wyprodukowanej i energii uzyskanej ze środowiska nie równoważą utraty energii wówczas nadwyżkowe ciepło jest gromadzone w organizmie lub tracone do środowiska. Ogólnie wyraża to równanie bilansu cieplnego:

\[M = E + R + C + K + W + S \]

gdzie:
- \(M \) oznacza tempo metabolicznej produkcji ciepła;
- \(E \) jest szybkością utraty ciepła przez parowanie;
- \(R \) i \(C \) są szybkościami utraty ciepła odpowiednio przez promieniowanie i konwekcję;
- \(K \) to szybkość utraty ciepła przez przewodnictwo;
- \(W \) jest szybkością utraty energii jako pracy mechanicznej;
- \(S \) to szybkość akumulacji lub utraty ciepła w organizmie, która objawia się zmianami temperatury tkanek.

\(M \) ma zawsze dodatnią wartość, natomiast wyrażenia z prawej strony równania reprezentują wymianę energii ze środowiskiem i jej magazynowanie, więc mogą przyjmować zarówno ujemne, jak i dodatnie wartości. \(E, R, C, K \) i \(W \) mają dodatnie wartości, jeśli reprezentują utratę energii z organizmu, z kolei są ujemne, gdy przedstawiają gromadzenie energii.

Gdy \(S = 0 \), organizm jest w równowadze cieplnej i temperatura wewnętrzna ani nie zwiększa się, ani nie zmniejsza się. Gdy organizm nie jest w stanie równowagi cieplnej, średnia temperatura tkanek zwiększa...
się wówczas, gdy S ma dodatnią wartość lub zmniejsza się, gdy S jest ujemne.

Warunek zachowania homeotermii narzuca konieczność ograniczenia czasu przebywania człowieka w gorącym lub zimnym środowisku. Wzrost tętna, maksymalny poziom produkcji potu oraz wzrost temperatury wewnętrznej ciała są czułymi wskaźnikami obciążenia cieplnego organizmu i wyznaczają granice tolerancji niekorzystnego wpływu na organizm człowieka gorącego środowiska i pracy wykonywanej w takich warunkach. Z kolei w środowisku zimnym czynniki ograniczającymi ekspozycję człowieka są straty ciepła z organizmu, czego wynikiem może być zmniejszenie się temperatury wewnętrznej i lokalnych temperatur skóry, szczególnie w okolicach kończyn.

W środowisku neutralnym ilość ciepła, która jest wytwarzana przez przemianę w spoczynku lub podczas wykonywania określonej czynności, zostaje rozproszona w taki sposób, że temperatura wewnętrznej ciała utrzymuje się na stałym poziomie bez udziału niezależnego mechanizmu termoregulacji.

W rozważaniach dotyczących stabilności termicznej człowieka nie sposób pominąć rolę stosowanej odzieży. Ubranie zawsze stanowi bariерę pomiędzy powierzchnią skóry a otoczeniem, która oddziałuje zarówno na wymianę ciepła przez konwekcję i promieniowanie, jak i na wymianę ciepła przez odparowywanie wydzielonego potu. Wpływ zastosowanej odzieży może mieć decydujące znaczenie w środowisku zimnym w procesie zachowania ciepła organizmu, może też być czynikiem utrudniającym pracę w środowisku gorącym pomimo jej ochronnego działania np. przed działaniem promieniowania podczerwonego, czy czynników chemicznych. Trzeba podkreślić, że wpływ ubrania na wymianę ciepła jest bardzo złożony. Należy wprowadzić wiele uproszczeń uśredniających oraz pewne przybliżenia.

Komfort cieplny

Procesy termoregulacyjne zmierzają do zapewnienia komfortu cieplnego organizmu. Komfortem cieplnym określa się stan, w którym człowiek nie czuje chłodu ani ciepła. W warunkach komfortu cieplnego bilans cieplny organizmu jest zrównoważony, a oddawanie ciepła odbywa się przez promieniowanie, konwekcję i pocenie niewyczувalne oraz przez parowanie z dróg oddechowych. Temperatura ciała w stanie spoczynku wynosi około 37°C, a średnia ważona temperatura powierzchni skóry mieści się w granicach 32-34°C.

W przypadku oceny komfortu cieplnego odczucia cieplne człowieka odnoszą się do równowagi cieplnej całego ciała. Na tę równowagę wpływają aktywność fizyczna człowieka i odzież oraz parametry otoczenia takie, jak: temperatura powietrza, średnia temperatura promieniowania, prędkość przepływu powietrza i wilgotność powietrza.

Po przeprowadzeniu oceny lub pomiarów powyższych czynników można na podstawie aktualnego stanu wiedzy przewidzieć wrażenia cieplne człowieka, wyrażone w 7-stopniowej skali wrażeń cieplnych, jako: gorące (+3), ciepłe (+2), lekko ciepłe (+1), neutrale (0), lekko chłodne (-1), chłodne (-2), zimne (-3), obliczając wskaźnik PMV (przewidywana ocena średnia) i związany z nim wskaźnik PPD (przewidywany procent osób niezadowolonych).

Na podstawie wskaźników PMV i PPD proponuje się określenie granic komfortu cieplnego jako zadowalających dla 80% ludzi, co odpowiada wartości wskaźnika PMV zawartej w granicach -0,5 < PMV < +0,5.

Wskaźnik PMV wykorzystywany jest również do klasyfikacji środowisk termicznych gorących i zimnych.

Warunki komfortu cieplnego stwarzają jednakowe i najkorzystniejsze warunki pracy, dostępne dla ogółu pracowników. W takich warunkach możliwa jest praca całą zmienną roboczą, mogą być także wykonywane prace wymagające wyjątkowej precyzji i uwagi.

W ostatnich latach komfort cieplny jest swoistego rodzaju "produktem", który się wytwarza, sprzedaje i na który ciągle wzrasta popyt.
Środowisko gorące

Powyżej strefy komfortu cieplnego, w zakresie pola wysokiej temperatury powietrza i promieniowania (PMV > +2), rozciąga się obszar warunków klimatycznych, dla których równanie bilansu cieplnego, obliczone wyłącznie na podstawie wymiany ciepła na drodze konwekcji i promieniowania, ma wartość dodatnią. Warunki te będą dalej określane jako środowisko gorące, warunki stresu termicznego lub, biorąc pod uwagę obciążenie ustroju w tych warunkach, dyskomfort gorący ogólny.

Poza podwyższoną temperaturą otoczenia istnieją też inne przyczyny powstania stresu cieplnego. Przykładowo, brak równowagi bilansu cieplnego może być wywołany zwiększeniem metabolicznej produkcji ciepła lub zwiększeniem wilgotności powietrza i zmianą szybkości przepływu powietrza, gdy jego temperatura jest wyższa od średniej ważonej temperatury skóry.

Jeżeli w środowisku gorącym wykonywana jest praca, wówczas krew płynąca z serca musi dotrzeć do pracujących mięśni oraz na powierzchnię ciała w celu oddania nadmiaru ciepła. Jeśli wykonywana jest ciężka praca wówczas łatwo może dojść do przegrzania organizmu.

Zdarza się, że organizm podporządkowany prawu zachowania stałej temperatury wewnętrznej ciała nie może sprostać każdemu obciążeniom pracy i środowiska. Działanie środowiska cieplnego należy więc ścieśle wiązać z czasem.

Obecnie, na podstawie aktualnego stanu wiedzy możemy ocenić nie tylko wielkość obciążenia termicznego i jego najwyższą wartość dopuszczalną (NDN), lecz również wyznaczyć czas ekspozycji dopuszczalnej, określić ryzyko oraz podać warunki i wymagany czas odnowy biologicznej organizmu.

Środowisko zimne

Poniżej strefy komfortu cieplnego, w zakresie pola niskiej temperatury zarówno powietrza, jak i promieniowania (PMV < -2), rozciąga się obszar warunków klimatycznych, dla których równanie bilansu cieplnego, obliczone wyłącznie na podstawie wymiany konwekcyjnej i przez promieniowanie, ma wartość ujemną. Warunki te będziemy określać dalej jako środowisko zimne, warunki stresu termicznego lub, biorąc pod uwagę obciążenie ustroju w tych warunkach, dyskomfort zimny ogólny.

Powstanie stresu termicznego zimnego może mieć również inne przyczyny. Nierównowagę bilansu cieplnego wywołuje na przykład obniżenie metabolizmu i zmianę szybkości przepływu powietrza, gdy jego temperatura jest niższa od średniej ważonej temperatury skóry.

Fizjologiczne podstawy równowagi cieplnej w zimnie opierają się na zdolności organizmu zarówno do produkcji ciepła, jak i jego zatrzymania. Zachowanie ciepła następuje przez ograniczenie ilości ciepła przynoszonego z wnętrza ciała do kończyn oraz wzrost izolacyjności tkanek powierzchniowych przez zwężenie głębszych naczyń w kończynach oraz naczyń powierzchniowych. W rezultacie wnętrze kończyn i ich powierzchnia ochłodza się redukując gradient temperatury dla utraty ciepła. Drugi proces - produkcja ciepła - zachodzi w tkankach metabolicznie aktywnych, głównie w mięśniach.

83
Oba mechanizmy, czyli produkcji i zachowania ciepła, mają na celu utrzymanie homeostazy termicznej ustroju, a ich działanie powoduje wiele wtórnych zmian czynnościowych ze strony różnych narządów i układów. Należą do nich przede wszystkim zmiany w objętości i rozmieszczeniu płynów ustrojowych, zmiany w czynnościach nerek i inne.

Organizm, podporządkowany prawu zachowania stałej temperatury wewnętrznej, nie może oczywiście sprostać każdemu obciążeniu ze strony środowiska. Podobnie jak w przypadku środowiska gorącego, skutki działania środowiska zimnego należy ścisłe wiązać z czasem jego oddziaływania.

Środowisko zimne może powodować chłodzenie całego ciała prowadząc do hipotermii i dlatego w tym środowisku należy stosować odzież ciepłochronną. Wymaganą ciepłochronność odzieży IREQ (required clothing insulation) określa się w jednostkach clo, w zależności od szybkości metabolicznej produkcji ciepła i parametrów środowiska zewnętrznego. Zastosowanie wymaganej ciepłochronności odzieży ma zapobiegać hipotermii i obniżeniu temperatury wewnętrznej ciała nie więcej niż o 1,0 °C, czyli do 36,0 °C.

W zimnym środowisku człowiek może doznawać także miejscowego stresu zimna, który jest oceniany za pomocą wskaźnika siły chłodzącej powietrza WCI (wind chill index). Oznaczenie tego wskaźnika jest konieczne do oceny miejscowego chłodzenia ciała, np. powierzchni twarzy, czy rąk. Wraz ze wzrostem wartości wskaźnika WCI rośnie niebezpieczeństwo (ryzyko) odmrożenia skóry.

Środowiska termiczne niejednorodne i o parametrach zmiennych w czasie

W dotychczasowych rozważaniach założono stałość parametrów fizycznych charakteryzujących środowisko cieplne pracy zarówno w czasie, jak i w przestrzeni. W praktyce nie występują tak idealne warunki. Człowiek może mieć ogólnie termicznie neutralne odczucia, lecz lokalnie możliwe jest odczuwanie dyskomfortu w niektórych częściach ciała (za zimno lub za gorąco). Przyczyną tego lokalnego dyskomfortu będzie np. nadmierne promieniowanie z jednego kierunku, lokalne konwekcyjne chłodzenie (przeciągi), kontakt z gorącą lub zimną powierzchnią, wreszcie pionowy gradient temperatury.

Również poziom przemian metabolicznych na ogół jest zmienny w czasie, tak, jak zmienia się wydatek energetyczny, związany z wielkością obciążenia pracą fizyczną, zależnie od wymagań wykonywanej pracy.

Zmiany warunków środowiska termicznego i pracy prowadzą do zmiennych obciążeń organizmu człowieka. W zakresie prawidłowej oceny zagrożenia (ryzyka) musi to pozostawić ślad w postaci konieczności analizowania uśrednionych wartości obciążenia. Zwiększa to znacznie liczbę niezbędnych pomiarów parametrów środowiska, które przy dużej niejednorodności środowiska, powinny być prowadzone na wysokości głowy, piersi i nóg pracownika.

Powiązanie człowieka ze środowiskiem termicznym pracy ma charakter złożony ze względu na występowanie licznych wzajemnie na siebie oddziałujących czynników. Dokładne poznanie charakteru, dynamiki i wielkości tych oddziaływań stanowi jednak niezbędną podstawę do rzetelnie prowadzonej pracy w zakresie ochrony człowieka przed skutkami obciążeń występujących przy pracy tak w zimnym, jak i gorącym środowisku.

Optymalizacja przemysłowego środowiska termicznego pracy, w celu zmniejszenia do minimum jego niekorzystnego wpływu na organizm człowieka, oznacza jednoczesną poprawę zdrowia, bezpieczeństwa i wydajności pracy. Jest więc działaniem niezbędnym z punktu widzenia humanitarnego i utylitarnego.
Substancje chemiczne

Jednym z powszechnie występujących czynników szkodliwych w środowisku pracy są substancje chemiczne. Narażenie na te czynniki występuje praktycznie we wszystkich gałęziach krajowej gospodarki. Procesy technologiczne, w których są one produkowane, przetwarzane lub stosowane są źródłem zanieczyszczeń powietrza na stanowiskach pracy. Według danych GUS z 2005 r. substancje chemiczne stanowią zagrożenie dla 5,5% ogólnej liczby pracowników zatrudnionych w warunkach szkodliwych dla zdrowia.

Substancje chemiczne w powietrzu na stanowiskach pracy występują w postaci gazów, par, cieczy lub ciał stałych. W warunkach narażenia zawodowego wchłanianie substancji zachodzi przede wszystkim przez drogi oddechowe, ale również przez skórę i z przewodu pokarmowego.

Rysunek 27. Drogi wchłaniania substancji chemicznych

Reakcja organizmu na substancje toksyczne zależy od ich właściwości fizykochemicznych, drogi wchłaniania, wielkości dawki i okresu narażenia, a także od takich cech organizmu jak płędź, wiek, ogólne stan zdrowia i odżywianie oraz stan układów: endokrynologicznego, immunologicznego, genetycznego. Zależy ona też od czynników zewnętrznych, jak temperatura i wilgotność powietrza.

Skutki narażenia na szkodliwe substancje chemiczne mogą być miejscowe i układowe, a ich nasilenie może mieć charakter ostry lub przewlekły. Skutki miejscowe to działanie drażniące i uczulające skórę i błony śluzowe. Skutki układowe to zmiany w ośrodkowym i obwodowym układzie nerwowym, wątrobie, nerkach, układzie sercowo-naczyniowym itd. Wyróżnia się także odległe następstwa ekspozycji na substancje toksyczne. Definiuje się je jako procesy patologiczne rozwijające się w organizmie po dłuższym lub krótszym okresie utajenia. Działanie odległe może rozwijać się bezpośrednio w organizmach narażonych na działanie substancji toksycznej lub dopiero w następnych pokoleniach. Zmiany te o różnym charakterze często przyjmują formę przerostu nowotworowego (działanie rakotwórcze). Zaburzenia wtórne - pokoleniowe - najczęściej mają charakter zaburzeń genotoksycznych (zmiany w materiale genetycznym), embriotoksycznych (zmiany patologiczne u potomstwa) i teratogennych (zmiany patologiczne w zarodkach lub płodach).

Ryzyko związane ze stosowaniem substancji i preparatów chemicznych to prawdopodobieństwo wystąpienia u pracowników niekorzystnych skutków zdrowotnych.

Jeżeli przedsiębiorstwo jest małe i pracodawca dobrze zna wykonywaną tam pracę oraz czynniki środowiska stanowiące zagrożenie dla pracowników, może samodzielnie ocenić ryzyko. W większym przedsiębiorstwie ocenę ryzyka związanego z narażeniem pracowników na substancje lub preparaty chemiczne powinien przeprowadzić kompetentni pracownicy, najlepiej wraz ze specjalistą ds. bezpieczeństwa i higieny pracy.
Wartości najwyższych dopuszczalnych stężeń substancji chemicznych

Koncepcja dopuszczalnych poziomów dla substancji chemicznych w powietrzu środowiska pracy zakłada, że dla każdej substancji istnieje stężenie, przy którym i poniżej którego u pracownika nie wystąpią żadne szkodliwe zmiany w stanie zdrowia. Najwyższe dopuszczalne stężenie (NDS), najwyższe dopuszczalne stężenie chwilowe (NDSCh) i/lub najwyższe dopuszczalne stężenie pułapowe (NDSP) są to trzy kategorie normatywów higienicznych ustalane w Polsce.

Polska jest jednym z krajów, gdzie istnieje już od kilkunastu lat system ustalania normatywów higienicznych, którego głównym ogniwem jest Międzyresortowa Komisja ds. Najwyższych Dopuszczalnych Stężeń i Natężeń Czynników Szkodliwych dla Zdrowia. W jej skład wchodzą przedstawiciele resortów resortów zdrowia, pracy, przemysłu, ochrony środowiska, instytucji naukowych oraz pracodawców i związków zawodowych.

Komisja utworzyła m.in. Zespół Ekspertów ds. Czynników Chemicznych zajmujący się opracowywaniem dokumentacji dopuszczalnych poziomów narażenia zawodowego dla substancji chemicznych. Wartości najwyższych dopuszczalnych stężeń (NDS, NDSCh, NDSP) określone są dwuetapowo: Zespół Ekspertów ds. Czynników Chemicznych Międzyresortowej Komisji ds. NDS i NDN dokonuje oceny merytorycznej dokumentacji dopuszczalnych poziomów narażenia zawodowego opracowanych przez poszczególnych ekspertów Zespołu oraz ustala propozycje wartości najwyższych dopuszczalnych stężeń wyłącznie w oparciu o kryteria zdrowia, ocenę ryzyka zdrowotnego i najbardziej aktualne dane naukowe. Ocena ryzyka zdrowotnego dla substancji rakotwórczych polega na określeniu prawdopodobieństwa zachorowania lub zgonu z powodu choroby nowotworowej w następstwie narażenia zawodowego na określoną substancję rakotwórczą. Dla czynników rakotwórczych Międzyresortowa Komisja ds. NDS i NDN przyjęła akceptowane poziomy ryzyka zawodowego zawarte w granicach od \(10^{-3}\) do \(10^{-4}\) tzn., że przedstawiciele pracobiorców, pracodawców oraz przedstawiciela administracji państwa zaakceptowali możliwość przyrostu liczby dodatkowych nowotworów, a mianowicie 1 nowotworu na 1000 osób narażonych lub 1 nowotworu na 10000 osób narażonych na działanie substancji rakotwórczej w określonym stężeniu.

Propozycje wartości dopuszczalnych stężeń dla substancji chemicznych wraz z dokumentacją są przedstawiane na posiedzeniu Międzyresortowej Komisji. Następnie w formie wniosku zostają skierowane do Ministra Pracy i Polityki Społecznej. Po zatwierdzeniu wartości najwyższych dopuszczalnych stężeń są publikowane w Dzienniku Ustaw w formie rozporządzenia Ministra Pracy i Polityki Społecznej w sprawie najwyższych dopuszczalnych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy. Są to normatywy higieniczne obowiązujące prawnie dla wszystkich gałęzi gospodarki narodowej. Dokumentacje dopuszczalnych poziomów narażenia zawodowego są sukcesywnie publikowane w kwartalniku Komisji Podstawy i Metody Oceny Środowiska Pracy.

Znajomość danych zawartych w pełnych dokumentacjach dotyczących oddziaływania czynników szkodliwych na organizm człowieka jest niezbędna do ustalenia właściwej profilaktyki medycznej i podejmowania odpowiednich działań korygujących w celu poprawy warunków pracy.

Polska lista normatywów higienicznych obejmuje następujące kategorie najwyższych dopuszczalnych stężeń (rozporządzenie Ministra Pracy i Polityki Społecznej z dnia 29 listopada 2002 r. w sprawie najwyższych dopuszczalnych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy DzU 217, poz. 1833 ze zm. 2005 r., Dz.U. 212, poz. 1769):

- **Najwyższe dopuszczalne stężenie (NDS)** - wartość średnia ważona stężenia, którego oddziaływanie na pracownika w ciągu 8-godzinnego dobowego i przeciętnego tygodniowego wymiaru czasu pracy, określonego w Kodeksie pracy, pracy przez okres jego aktywności zawodowej nie powinno spowodować ujemnych zmian w jego stanie zdrowia oraz w stanie zdrowia jego przyszłych pokoleń
- **Najwyższe dopuszczalne stężenie chwilowe (NDSCh)** - wartośćśrednia stężenia, która nie powinna spowodować ujemnych zmian w stanie zdrowia pracownika, jeżeli występuje w środowisku pracy dłużej niż 15 minut i nie częściej niż 2 razy w czasie zmiany roboczej, w odstępie czasu nie krótszym niż 1 godzina

- **Najwyższe dopuszczalne stężenie pułapowe (NDSP)** - wartość stężenia, które nie powinno spowodować ujemnych zmian w stanie zdrowia pracownika, jeżeli występuje w środowisku pracy dłużej niż 15 minut i nie częściej niż 2 razy w czasie zmiany roboczej, w odstępie czasu nie krótszym niż 1 godzina.

Wykaz wartości najwyższych dopuszczalnych stężeń czynników szkodliwych dla zdrowia w środowisku pracy zawiera 479 substancji chemicznych i 19 czynników pyłowych (rozporządzenie Ministra Pracy i Polityki Społecznej z dnia 29 listopada 2002 r., ze zm. 2005 r.). W 2007 r. ukaże się nowe rozporządzenie poszerzające wykaz wartości NDS o 16 nowych substancji chemicznych.

Wykaz substancji, czynników i procesów technologicznych o działaniu rakotwórczym i mutogennych, sposób ich rejestracji oraz warunki sprawowania nadzoru nad stanem zdrowia pracowników zawodowo narażonych na ich działanie znajduje się w **Rozporządzenie Ministra Zdrowia z dnia 1 grudnia 2004 r. w sprawie substan, preparatów, czynników lub procesów technologicznych o działaniu rakotwórczym lub mutogennym w środowisku pracy** (Dz.U. nr 160/2005, poz. 1356).

Wzbronione jest zatrudnianie kobiet w ciąży lub karmiących piersią oraz młodocianych przy pracach w narażeniu na czynniki technologiczne. W 1996 r. w sprawie wykazu substancji o działaniu rakotwórczym, a także na inne substancje chemiczne określone w odrębnych przepisach (Rozporządzenie Rady Ministrów z dn. 10 września 1996 r. w sprawie wykazu substancji o działaniu rakotwórczym, Rz. Min. nr 114, poz. 542 wraz z późniejszymi zmianami; Rozporządzenie Rady Ministrów z dn. 24 sierpnia 2004 r. w sprawie wykazu substancji o działaniu rakotwórczym, Rz. Min. nr 200, poz. 2047 ze zm. 2005 r., Rz. Min. nr 136, poz. 1145).

Wartości NDS stanowią wytyczne dla projektantów nowych i modernizowanych technologii i wyrobów, kryteria oceny warunków pracy oraz podstawę do prowadzenia działalności profilaktycznej w zakładach pracy.

Pracodawca jest zobowiązany do takiego wyposażenia i utrzymania budynków, instalacji i maszyn, stanowisk pracy, organizacji procesu technologicznego, aby nie nastąpiło zanieczyszczenie środowiska pracy lub było ono ograniczone do możliwie najniższego poziomu, a dla substancji o ustalonych wartościach najwyższych dopuszczalnych stężeń – do poziomu nieprzekraczającego tych wartości.

Pracodawca jest również zobowiązany do badania stężeń substancji chemicznych w celu ustalenia stopnia narażenia pracowników.

Zagrożenia związane ze stosowaniem substancji i preparatów chemicznych

W zależności od prowadzonej działalności w przedsiębiorstwie, z substancjami i preparatami chemicznymi możemy się spotkać na różnych stanowiskach pracy: w magazynach, w warsztatach produkcyjnych, w laboratoriach, w warsztatach remontowych, oczyszczalniach ścieków itd. Przede wszystkim należy, więc zbierać informacje na temat stosowanych substancji lub preparatów chemicznych. Ważne informacje na temat substancji i preparatów można znaleźć na etykietce. Karta charakterystyki niebezpiecznych substancji i niebezpiecznych preparatów chemicznych, jeszcze bardziej szczegółowo informuje o
niebezpiecznych właściwościach poszczególnych substancji chemicznych lub preparatów, rodzaju i rozmiarach stwarzanego przez nie zagrożenia oraz o zasadach postępowania z nimi, co umożliwia racjonalną i efektywną profilaktykę w zakładach pracy, a także - w przypadku awarii - ochronę ludzi i środowiska poza zakładem przemysłowym.

Substancje i preparaty chemiczne – zgodnie z Ustawą o substancjach i preparatach chemicznych z 11 stycznia 2001 r. (Dz. U. nr 11, poz. 84, zm. Dz. U. nr 142, poz. 1187) – podlegają klasyfikacji pod względem zagrożenia, jakie stanowią dla zdrowia człowieka lub dla środowiska. Osoba wprowadzająca do obrotu substancję niebezpieczną lub niebezpieczny preparat (producent, dystrybutor, importer) jest zobowiązana do bezpłatnego udostępnienia odbiorcy karty charakterystyki, najpóźniej w dniu pierwszej dostawy oraz ma obowiązek zaktualizować kartę w przypadku pojawienia się nowych istotnych danych.

Pracodawca jest zobowiązany do upowszechniania informacji podanych w kartach wśród pracowników. Wpłynie to na ograniczenie niekorzystnych skutków działania substancji lub preparatów chemicznych na zdrowie pracowników.

Informacje dotyczące niekorzystnych skutków, które mogą powodować u pracowników substancje i preparaty chemiczne powinny być przekazywane w sposób jasny i zrozumiały.

Pracownicy stosujący substancję lub preparat niebezpieczny mają obowiązek zapoznania się z kartą charakterystyki oraz podjęcia niezależnych działań zapobiegających powstaniu zagrożenia. Jako niebezpieczne klasyfikuje się substancje lub preparaty chemiczne:

- właściwościach wybuchowych
- właściwościach utleniających
- skrajnie łatwo palne
- wysoce łatwo palne
- łatwo palne
- bardzo toksyczne
- toksyczne
- szkodliwe
- źrące
- drażniące
- uczulające
- rakotwórcze
- mutagenne
- działające na rozrodczość
- niebezpieczne dla środowiska.
Osoba stosująca substancję niebezpieczną lub preparat ma obowiązek zapoznania się z kartą charakterystyki oraz podjęcia niezbędnych działań zapobiegających powstaniu zagrożenia.

Wzór karty charakterystyki substancji niebezpiecznej lub preparatu niebezpiecznego oraz sposób jej sporządzania i aktualizowania jest podany w rozporządzeniu Ministra Zdrowia z dnia 3 lipca 2002 r. w sprawie karty charakterystyki substancji niebezpiecznej i preparatu niebezpiecznego (Dz. U. nr 140, poz. 1171, ze zm. Dz.U. 2005 r., nr 2, poz. 8).

Zgodnie z tym wzorem informacje zawarte w kartach ujęto w 16 następujących punktach:

- Identyfikacja substancji/preparatu
- Skład i informacja o składnikach
- Identyfikacja zagrożeń
- Pierwsza pomoc
- Postępowanie w przypadku pożaru
- Postępowanie w przypadku niezamierzonego uwolnienia do środowiska
- Postępowanie z substancją/preparatem i jej/jego magazynowanie
- Kontrola narażenia i środki ochrony indywidualnej
- Właściwości fizykochemiczne
- Stabilność i reaktywność
- Informacje toksykologiczne
- Informacje ekologiczne
- Postępowanie z odpadami
- Informacje o transporcie
- Informacje dotyczące przepisów prawnych
- Inne informacje

Substancje i preparaty niebezpieczne podlegają zgłoszeniu do Biura do Spraw Substancji i Preparatów Chemicznych.

Wykaz substancji niebezpiecznych wraz z ich klasyfikacją i oznakowaniem znajduje się w załączniku do rozporządzenia Ministra Zdrowia z dnia 28 września 2005 r. (Dz. U. nr 201, poz. 1674).

Na każdym opakowaniu zawierającym niebezpieczną substancję lub preparat, zgodnie z rozporządzeniem Ministra Zdrowia z dnia 2 września 2003 r. w sprawie oznakowania opakowań substancji niebezpiecznych i preparatów niebezpiecznych (Dz. U. nr 173, poz.
1679, ze zm. 2004 r., Dz.U. nr 260 poz. 2595), powinna być trwale przytwierdzona etykietka zawierająca następujące elementy:

- nazwa substancji lub nazwa handlowa preparatu, przeznaczenie preparatu
- nazwa lub imię i nazwisko, adres i numer telefonu producenta substancji lub preparatu, a w przypadku substancji lub preparatów produkowanych za granicą także importer lub dystrybutora wprowadzającego substancje lub preparat do obrotu na terytorium Rzeczpospolitej Polskiej
- nazwę chemiczną lub nazwy chemiczne substancji obecnych w preparacie w oparciu o kryteria podane w ww. rozporządzeniu
- znak lub znaki ostrzegawcze i napisy określające ich znaczenie
- zwroty wskazujące rodzaj zagrożenia wynikającego z niebezpieczeństwa związanego ze stosowaniem substancji lub preparatu (zwroty R)
- zwroty opisujące bezpieczne warunki stosowania substancji lub preparatu (zwroty S)

Minister Zdrowia określił również obowiązek dostarczenia karty charakterystyki niektórych preparatów niezaklasyfikowanych jako niebezpieczne (rozporządzenie Ministra Zdrowia z dnia 14 sierpnia 2002 r., Dz. U. nr 142, poz. 1194).

ZAGROŻENIA BIOLOGICZNE

Podjęta przez Unię Europejską inicjatywa uwzględnienia w prawodawstwie krajów członkowskich problematyki ochrony pracowników przed biologicznymi zagrożeniami i opracowania klasyfikacji tych zagrożeń stanowi istotny postęp w tej dziedzinie oraz nakłada na Polskę obowiązek odpowiedniego dostosowania naszego prawodawstwa. Nastąpiło to poprzez nowelizację kodeksu pracy oraz Rozporządzenie Ministra Zdrowia z dnia 22 kwietnia 2005 r. w sprawie szkodliwych czynników biologicznych dla zdrowia w środowisku pracy oraz ochrony zdrowia pracowników zawodowo narażonych na te czynniki (Dz.U. 2005 nr 81 poz. 716)

Czynniki biologiczne - Informacje ogólne

DEFINICJA

Szkodliwe czynniki zagrożeń biologicznych w środowisku pracy, określone także jako „biologiczne czynniki zagrożenia zawodowego”, „zagrożenia biologiczne w środowisku pracy”, „biologiczne szkodliwości zawodowe” są to takie mikro- i makroorganizmy oraz takie struktury i substancje wytwarzane przez te organizmy, które występując w środowisku pracy wywierają szkodliwy wpływ na organizm ludzki i mogą być przyczyną chorób pochodzenia zawodowego.

Ta szeroka definicja obejmuje zatem nie tylko drobnoustroje wywołujące choroby zakaźne, utożsamiane do niedawna w wielu opracowaniach z omawianą grupą czynników, ale również mikro- i makroorganizmy wywołujące choroby i dolegliwości o podłożu alergicznym

Alergia - zwiększona reaktywność układu odpornościowego (nadwrażliwość) na określony czynnik w wyniku wytworzenia swoistych przeciwiał, lub uczulonych komórek. Może prowadzić do zaburzeń czynnościowych i choroby., toksycznym i nowotworowym, a także spełniające funkcję wektorów

Wektory - w znaczeniu biologicznym są to zwierzęta bezkręgowce (najczęściej krwiopijne owady i stawonogi), przenoszące zarazki chorób zakaźnych, określanych wówczas jako transmisyjne. (przenosicieli) chorobotwórczych zarazek.
Definicja ta obejmuje zatem niektóre organizmy większe, np. pewne krwiopijne owady lub kleszcze, oraz niektóre struktury makroorganizmów (np. pyłki kwiatowe o działaniu alergizującym). Obejmuje ona również chorobotwórcze substancje wydalane przez mikro- i makroorganizmy do środowiska zewnętrznego w sposób naturalny (np. endotoksyna bakteryjna, mikotoksyny, toksyny we włoskach parzących niektórych owadów, alergeny białkowe w wydalinach roztoczy, ptaków i ssaków) lub uwalniające się w wyniku przemysłowego przetwarzania tkanek roślinnych lub zwierzących (np. endotoksyne alergeny w pyle z rozdrobniionych roślin lub ze sproszkowanych enzymów ssaków).

Endotoksyny - biologicznie aktywne, wielkocząsteczkowe lipopolisacharydy (LPS), występujące w najbardziej zewnętrznej warstwie ściany komórkowej bakterii Gram−ujemnych. Powodują zaburzenia czynnościowe u ludzi i zwierząt.

Mikotoksyny - wytwarzane przez różne gatunki grzybów pleśniowych nielotne metabolity o budowie cyklicznej i niskim ciężarze cząsteczkowym. Występują w wielu odmianach (najbardziej znane są aflatoksyny), mogą działać na człowieka toksycznie, teratogennie, mutagennie i rakotwórczo.

Alergen - czynnik wywołujący alergię (np. zarodnik grzyba, naskórek krowy).

Klasyfikacja

Szkodliwe czynniki biologiczne w środowisku pracy klasyfikuje się najczęściej według zasad systematyki przyrodniczej, począwszy od organizmów najniższych (priony, wirusy), aż do organizmów najwyższej zorganizowanych (ssaki i wytwarzane przez nie alergeny) (Rys. 1), (Rys. 2). Klasyfikacja zagrożeń biologicznych w środowisku pracy, zamieszczona w załącznikach do dyrektywy Unii Europejskiej 90/679/EEC w sprawie ochrony pracowników przed tymi zagrożeniami obejmuje ogółem 379 czynników, w większości zakaźnych lub inwazyjnych. Dzieli się je na następujące cztery grupy (w nawiasach podano liczby sklasyfikowanych czynników): wirusy (128), bakterie (151), grzyby (30) i pasożyty (70). W najnowszej monografii wydanej w Polsce, uwzględniającej szeroko czynniki o działaniu alergizującym i lub toksycznym, sklasyfikowano ogółem 622 następujące czynniki lub grupy czynników: 6 prionów, 132 wirusy, 181 bakterii, 74 grzyby, 83 pasożyty, 76 czynników roślinnych i 69 czynników zwierzęcych innych niż pasożyty.

Priony - powstałe w wyniku naturalnych procesów mutacji zakaźne cząstki białka, nie posiadające (w przeciwieństwie do wirusów) kwasów nukleinowych. Wywołują przewlekłe choroby ludzi i zwierząt.
Zawodowe zagrożenia biologiczne można klasyfikować również na podstawie innych kryteriów, takich jak środowisko występowania, sposób przenoszenia i stopień ryzyka, który przedstawiają one dla narażonych pracowników. Według tego ostatniego kryterium, najczęściej dzieli się zagrożenia biologiczne na cztery klasy, przy czym klasa I oznacza praktycznie brak zagrożenia, klasa II – umiarkowane zagrożenie, klasa III – poważne zagrożenie i klasa IV – bardzo poważne zagrożenie, grożące śmiercią.

Podjęta przez Unię Europejską inicjatywa uwzględnienia w prawodawstwie krajów członkowskich problematyki ochrony pracowników przed biologicznymi zagrożeniami i opracowania klasyfikacji tych zagrożeń stanowi istotny postęp w tej dziedzinie oraz nakłada na Polskę obowiązek odpowiedniego dostosowania naszego prawodawstwa. Nastąpiło to poprzez nowelizację kodeksu pracy oraz Rozporządzenie Ministra Zdrowia z dnia 22 kwietnia 2005 r. w sprawie szkodliwych czynników biologicznych dla zdrowia w środowisku pracy oraz ochrony zdrowia pracowników narażonych na te czynniki.

Występowanie i rozprzestrzenianie

Drobnoustroje będące czynnikami zagrożenia zawodowego występują na ogół wewnątrz organizmów ludzkich, zwierzęcych i roślinnych lub na powierzchni tych organizmów. Mogą znajdować się również w glebie, wodzie, ściekach, odpadach, nawozie, ściółce, na składowanych surowcach roślinnych i zwierzęcych, na powierzchni budynków i różnych przedmiotów, w olejach, drewnie, a także w pyle i w powietrzu. W środowisku silnie zanieczyszczonym pyłem organicznym (np. ze zboża, kompostu), stężenie drobnoustrojów w powietrzu osiąga wartości rzędu milionów lub nawet miliardów CFU (Colony Forming Units = jednostki tworzące kolonie), przekraczając wielokrotnie poziom bezpieczny.

W rozprzestrzenianiu się biologicznych czynników szkodliwych w środowisku pracy, największe znaczenie epidemiologiczne ma droga powietrzno-żylna i powietrzno-żelazkowa. Czynniki przenoszone tę drogą (zarazki, alergeny, toksyny) mogą wniknąć do ustroju ludzkiego przez układ oddechowy, spojówki, nabłonki jamy nosowo-żylniej i skóry. Szkodliwe czynniki biologiczne mogą rozprzestrzeniać się również drogą wodną, przez glebę, zaśażyte przedmioty (np. strzykawki i instrumenty w zakładach służby zdrowia), zaśażyte zwierzęta (w tym kwiopijne owady i pajęczaki), a także przez produkty pochodzenia zwierzęcego i roślinnego. W tych przypadkach wnikają one najczęściej do organizmu ludzkiego przez skórę.

Droga pokarmowa ma mniejsze znaczenie epidemiologiczne.

Stawonogi, które podczas prac magazynowych lub polowych mogą powodować choroby alergiczne, a w wyniku ukaszenia - toksyczne zapaść skóry lub wprowadzenie do organizmu chorobotworczych drobnoustrojów:

- owady
- śródnie rozłożne (główne rozkładki)

Substancje pochodzenia roślinnego wywołujące choroby alergiczne i toksyczne.

Substancje pochodzenia zwierzęcego wywołujące choroby alergiczne.
Działanie na organizm ludzki

W stosunku do osób narażonych zawodowo czynniki biologiczne mogą wykazywać działanie zakaźne, alergizujące, toksyczne, drażniące i rakotwórcze.

Największe znaczenie ma działanie zakaźne i alergizujące.

Wśród chorób zakaźnych i inwazyjnych największe znaczenie mają choroby wywołane przez wirusa u pracowników służby zdrowia oraz choroby odzwierzęce (przenoszone od zwierząt na ludzi, zwane też zoonozami) występujące u rolników, leśników, rybaków i przedstawicieli zawodów pokrewnych.

Choroby odzwierzęce (zoonozy) – choroby przenoszone od zwierząt na człowieka.

Choroby alergiczne wywołane przez czynniki biologiczne występują najczęściej u osób narażonych na kontakt z pylem organicznym, a także roślinami i zwierzętami (u rolników i przedstawicieli wielu innych zawodów). Obejmują one najczęściej choroby układu oddechowego (astma oskrzeliowa, alergiczne zapalenie pęcherzyków płucnych, alergiczny nieżyt nosa), choroby skóry (pokrzywka, wyprysk kontaktowy) oraz zapalenie spojówek.

Duża liczba czynników biologicznych występujących w środowisku pracy wywiera na organizm ludzki działanie toksyczne, objawiające się najczęściej reakcją zapalną skóry (np. w wyniku działania toksycznych substancji pochodzącą z niektórych roślin, wprowadzenia jadu w wyniku ukąszenia przez kleszcze lub niektóre drobne roztocze). Wdychane wraz z pylem mikroorganizmy i wytwarzane przez nie substancje (endotoksyna, peptydoglikan, glukany, mikotoksyny) wywierają na płucny układ odpornościowy działanie podobne do alergicznego, które określamy jako działanie immunotoksyczne. Skutkiem tego działania może być na przykład niedawno opisana, ale częsta choroba, znana jako syndrom toksyczny wywołany pylem organicznym.

Mikroorganizmy - bardzo drobne organizmy (bakterie, grzyby, roztocze) widoczne dopiero pod mikroskopem lub lupą (polska nazwa: drobnoustroje). Przeciwwieństwem są makroorganizmy, które są widoczne gołym okiem.

Glukany - biologicznie aktywne polimery glukozy, wchodzące w skład błony komórkowej grzybów i niektórych bakterii. Po wdychaniu przez człowieka mogą wywoływać stany zapalne układu oddechowego.

Immunotoksyczność - nadmierne pobudzenie, lub obniżenie aktywności układu odpornościowego przez czynniki o dużej aktywności biologicznej (np. endotoksyna, glukany, mikotoksyny), powodujące ujemne skutki zdrowotne. Zjawisko podobne do alergii, ale nie wymaga uprzedniego kontaktu z czynnikiem chorobotwórczym (uczulenia).

Czynniki biologiczne - Narażone grupy zawodowe

Szkodliwe czynniki biologiczne występują głównie w następujących środowiskach pracy:

- leczenie chorych ludzi i opieka nad nimi
- laboratoria mikrobiologiczne i analityczne
- hodowla i leczenie zwierząt
- hodowla roślin uprawnych
- przechowalnictwo i przetwórstwo surowców roślinnych i zwierzęcych
- leśnictwo i przemysł drzewny
- przemysł biotechnologiczny
• zbieranie i przetwarzanie odpadów, oczyszczanie ścieków
• praca w kontakcie z wodą (np. rybacy, nurkowie, hydraulicy, pracownicy wież chłodniczych)
• przemysł tekstylny
• przemysł maszynowy
• górnictwo
• praca z dziećmi i w instytucjach opieki społecznej
• praca przy której możliwy jest kontakt z materiałami, na których, najczęściej w wyniku długotrwałego przechowywania w środowisku wilgotnym, może występować obfity wzrost bakterii i grzybów.

Najbardziej narażeni na działanie czynników biologicznych są: pracownicy ochrony zdrowia i laboratoriów oraz pracownicy rolnictwa, leśnictwa, przemysłu rolno-spożywczego i drzewnego.

Pracownicy ochrony zdrowia i laboratoriów narażeni są głównie na czynniki zakaźne, a zwłaszcza na przenoszone przez krew wirusy pochodzenia ludzkiego, takie jak wirusy zapalenia wątroby typu B, C i G (HBV, HCV, HGV) oraz wirus wywołujący AIDS (HIV). Pracownicy z tych grup mogą być narażeni również na niektóre alergeny, np. alergeny zwierząt laboratoryjnych (zwłaszcza szczurów), które są częstą przyczyną astmy, nieżytu nosa i zapalenia spojówek u pracowników zwierzęcych.

Pracownicy rolnictwa, leśnictwa, przemysłu rolno-spożywczego i drzewnego narażeni są w czasie różnych prac (np. przy młoceńiu zboża, karmieniu zwierząt, obróbce drewna) na kontakt z pyłami organicznych pochodzenia roślinnego i zwierzęcego, zawierających duży stężenia drobnoustrojów oraz wytwarzanych przez nie alergenów i toksyn. Może to powodować liczne choroby pochodzenia zawodowego o charakterze alergicznym i immunotoksycznym, takie jak: alergiczne zapalenie pęcherzyków płucnych (AZPP), astma oskrzelowa, syndrom toksyczny wywołany pyłem organicznym, alergiczny nieżyt nosa, podrażnienie błon śluzowych, alergiczne zapalenie spojówek i skóry oraz w niektórych, rzadkich przypadkach nowotwory górnych dróg oddechowych, np. gruczołolakorak nosa wywołany pyłem drzewnym. Hodowcy zwierząt i weterynarze narażeni są ponadto na zakażenie wirusami, bakteriami, grzybami, pierwotniakami i robakami wywołującymi choroby odzwierzęce (takie jak ornitoza, gorączka Q, leptospirozy, bruceloza, różyca, trychofytoza, toksoplazmoza), a rolnicy i ogrodnicy - na kontakt z alergenami i toksynami roślinnymi wywołującymi zapalenie skóry (dermatitis phytophogenes).

Wśród pracowników przemysłu biotechnologicznego znane są przypadki zawodowych uczulenia na enzymy proteolityczne bakterii stosowane do wytworu środków piorących, na toksyny bakteryjne stosowane jako bioinsektycyd oraz na grzyby Aspergillus niger używane do produkcji kwasu cytrynowego [10, 24]. Ostatnie dziesięciolecia przyniosły burzliwy rozwój tego przemysłu z zastosowaniem metody rekombinacji kwasu dezoksyrabonukleinowego (DNA) bakterii i grzybów, co jednak dzięki skutecznemu systemowi zabezpieczeń nie doprowadziło do pojawienia się niebezpiecznych mutantów ani wzrostu zachorowań wśród pracowników.

Pracownicy zbierający odpady komunalne oraz osoby zatrudnione przy przetwarzaniu tych odpadów w kompostowniach, wytwórniach biogazu i podobnych placówkach narażone są na wdychanie alergenów i toksyn wytwarzanych przez grzyby pieśniowe (zwłaszcza Aspergillus fumigatus), termofiline promieniowce i różne bakterie mezofiline. Pracownicy oczyszczalni ścieków narażeni są na wdychanie aerozolu kropkowego, który może zawierać różne bakterie i wirusy o działaniu zakaźnym, alergizującym i toksycznym, głównie bakterie Gramujemne i wytwarzane przez nie toksyny (endotoksyny, enterotoksyny białkowe).

Osoby pracujące w kontakcie z wodą (np. rybacy, nurkowie, hydraulicy, pracownicy wież chłodniczych, platform wieżowych) narażone są na zakażenie bakteriami legionelozy (Legionella spp.) powodującymi zapalenie płuc i gorączkę, a także amebami (Naegleria) powodującymi choroby...
centralnego układu nerwowego. Pracownicy tacy mogą być też narażeni na toksyny wytwarzane przez niektóre góry i zwierzęta wodne.

Pracownicy zakładów przemysłu tekstylnego przerabiających surowce roślinne (bawełna, len, konopie) narażeni są na immunotoksyczne substancje pochodzenia drobnowstrualowego (endotoksyny, glukany) i roślinnego (taniny). Pracownicy tego przemysłu zatrudnieni w zakładach przerabiających węglę i jedwab narażeni są na wdychanie alergenów pochodzenia zwierzęcego. Ostatnio zwrócono uwagę na zaskakujące, ale realne zagrożenie, jakie przedstawia dla pracowników szwany wielokrotnie użycie wydrążonej igiel, co może być przyczyną szerzenia się niebezpiecznych wirusów przenoszonych przez krew (HBV, HCV, HIV).

Pracownicy zakładów przemysłu maszynowego narażeni są na endotoksyny i alergeny bakterii Gramujemnych, które rozwijają się obficie w zużytych olejach i emulsjach olejowo-żelaznych, używanych do chłodzenia i smarowania maszyn. Bakterie te stanowią składnik tak zwanej "mgły olejowej" i występują w sąsiedztwie maszyn w wysokich stężeniach. Skutecznym środkiem profilaktycznym jest dodawanie do olejów lub emulsji efektywnych i zarazem bezpiecznych dla ludzi biocydów.

Górnci narażeni są na wdychanie toksynotwórczych grzybów rozwijających się na drewnianych staplach, a także na zakażenie normalnie nieszkodliwymi grzybami, które w gorącym i wilgotnym mikroklimacie kopalni ujawniają się i powodują grzybice skóry, zwłaszcza stóp. Wdychany pył mineralny upośledza czynność płucnego układu odpornościowego, zwłaszcza makrofagów, co ułatwia rozwój prątek (Mycobacterium tuberculosis, M. bovis, M. africanum, M. kansasii) oraz zwiększa zachorowalność na gruźlicę i mikobakteriozę płuc wśród górników.

Nauczyciele, wychowawcy i opiekunki społeczni narażeni są na przenoszone drogą kropelkową wirusy pochodzenia ludzkiego, wywołujące choroby układu oddechowego. Pracownicy domów opieki społecznej narażeni są również na zakażenie wirusami i bakteriami powodującymi choroby przewodu pokarmowego.

W ostatnich kilkudziesięciu latach udowodniono, że również pracownicy sfery kultury: konserwatorzy zabytków, bibliotekarze i archiwici narażeni są na kontakt z alergizującymi i toksynotwórczymi bakteriami oraz pleśni, które mogą się obficie rozwijać na zawilgoconych, starych książkach, rzeźbach, obrazach i murach. W wyniku narażenia, u pracowników tych mogą rozwijać się choroby alergiczne i immunotoksyczne układu oddechowego (astma oskrzelnów, alergiczny nieżyt nosa, syndrom toksyczny wywoływany pyłem organicznym), spojówek i skóry.

Biologiczne szkodliwości zawodowe stanowią bardzo ważny, chociaż wciąż niedoceniany problem medycyny pracy i zdrowia publicznego. Szacuje się, że w skali całego świata co najmniej kilkadziesiąt milionów ludzi pracujących w procesie pracy są narazieni na kontakt z działaniem biologicznie czynnych substancji. Problem ten występuje ze szczególną ostrością w krajach uprawickich, gdzie rolnicy i przedstawiciele zwierzęcych zawodów narażeni są na zarażenie rabiesami, a także na zarażenie pasożytami i bakteriami. W wielu krajach strefy umiarkowanej notuje się znaczną liczbę przypadków chorób pochodzenia zawodowego wywołanych przez czynniki biologiczne. Dotyczy to również Polski, gdzie czynniki te są przyczyną większości chorób uznanych za zawodowe w populacjach rolników i pracowników służby zdrowia.

Krótki przegląd najważniejszych czynników biologicznych w układzie systematycznym

Wirusy

Wirusy wywołujące choroby zawodowe można podzielić na dwie grupy. Pierwszą stanowią wirusy pochodzenia ludzkiego przedstawiające zagrożenie dla personelu służby zdrowia i opieki społecznej, a także, w mniejszym stopniu, dla nauczycieli i wychowawców. Drugą grupę stanowią wirusy odzwierzęce, powodujące zagrożenie głównie dla hodowców, personelu weterynaryjnego i leśników.
Największe zagrożenie epidemiologiczne dla personelu służby zdrowia stanowią wirusy zapalenia wątroby typu B (HBV), (Rys.28) i (zwłaszcza ostatnio) typu C (HCV). Wirusowe zapalenie typu B jest obecnie najczęstszą chorobą zawodową pracowników służby zdrowia. Szacuje się, że w Europie i USA każdego roku około 30 000 osób zakaża się w pracy wirusem wywołującym tę chorobę.

Rysunek 28. Wirusy zapalenia wątroby typu B (HBV) w surowicy krwi człowieka

Potencjalne zagrożenie stanowi wirus HIV (Human Immunodeficiency Virus) wywołujący chorobę AIDS, który jednak szybko ginie w środowisku zewnętrznym i dlatego liczba zawodowych zachorowań jest bardzo niska. Zagrożenie dla personelu służby zdrowia (zwłaszcza pediatrycznego i stomatologicznego), wychowawców i nauczycieli stanowi również, spotykane często u dzieci, wirusy przenoszone drogą powietrznokropelkową i wywołujące zakażenia gorączkowe: adenowirusy (Rys. 29), reowirusy, pneumowirus RS (RSV) i wirus różyczki.

Rysunek 29. Adenowirus ludzki

Do grupy zagrożeń odzwierzęcych należą wirusy występujące u przeżuwaczy (bydło, owce): wirus niesztowicy, wirus oszy krów, wirus guzków dojarek, wirus grudkowego zapalenia jamy ustnej bydła (orf), wirus pęcherzykowatego zapalenia jamy ustnej bydła i wirus pryszczycy. Duże znaczenie ma liczna grupa wirusów przenoszonych przez krwiopijne stawonogi, wśród których w Polsce największe zagrożenie stanowi wirus środkowoeuropejskiego kleszczowego zapalenia mózgu i opon mózgowo-żądrowych, przenoszony przez występujące w lasach liściastych i mieszanych kleszcze z gatunków Ixodes ricinus i Dermacentor reticulatus. Dotąd brak jest dowodów na zawodowe zagrożenie ze strony niedawno odkrytych prionów, które wywołują zakaźne, gąbczaste zwyrodnienie mózgu (Transmissible Spongiform Encephalitis, TSE), zarówno u człowieka (rzadka choroba Creutzfeldta-Jakoba), jak i u zwierząt (gąbczaste zwyrodnienie mózgu u bydła - BSE, popularnie zwane chorobą szalonych krów).

Bakterie

Liczne gatunki bakterii mogą być przyczyną zawodowych chorób zakaźnych (często odzwierzęcych), alergicznych i immunotoksycznych. Istotnym zagrożeniem dla personelu służby zdrowia jest prątek gruźlicy (Mycobacterium tuberculosis) oraz Gronkowce (Staphylococcus aureus) i paciorkowce (Streptococcus spp.), wywołujące schorzenia ropne. Wśród bakterii wywołujących choroby odzwierzęce, największe zagrożenie dla pracowników rolnictwa, przemysłu rolno-spożywczego, leśnictwa i służby
Weterynaryjnej stanowią: *riketsja* gorączki Q (Coxiella burnetii), zarazek choroby ptasiej (Chlamydia psittaci), krętki wywołujące leptospirozy (Leptospira interrogans), krętek wywołujący boreliozę z Lyme (Borrelia burgdorferi), (Rys. 30), pałeczki brucelozy (Rys. 31) (Brucella abortus, Brucella suis, Brucella melitensis), przecinkowiec (Campylobacter jejuni), pałeczka tularemii (Francisella tularensis), włoskowiec różycy (Erysipelothrix rhusiopathiae), pałeczka listeriozy (Listeria monocytogenes), paciorkowiec (Streptococcus suis), laseczka wąglika (Bacillus anthracis) oraz laseczka tężca (Clostridium tetani), (Rys. 32).

Riketsje - Drobne bakterie, powodujące choroby gorączkowe u człowieka i zwierząt, często połączone z wysypką.
Rysunek 33. Termofilne promieniowce (Saccharopolyspora rectivirgula) (synonimy: Micropolyspora faeni, Faenia rectivirgula)

Mogą one wywoływać również inne formy tej choroby u pracowników innych zawodów, narażonych w trakcie pracy na wdychanie aerozolu pyłowego lub kropelkowego (Rys. 34) z przegrzanych surowców, lub płynów.

Rysunek 34. Pałeczka legionellozy (Legionella pneumophila)

Głównym źródłem chorobotwórczego alergenu są gatunki: Saccharopolyspora rectivirgula (synonimy: Micropolyspora faeni, Faenia rectivirgula), Thermoactinomyces vulgaris, Thermoactinomyces thalpophilus i Saccharomonospora viridis. Są to nitkowate bakterie, rozwijające się w przemokniętych paszach (głównie siano) o dużej zawartości wody (30÷46 %), w których następuje proces samoagregowania do temperatury 55÷70 oC. Do uczulenia dochodzi w trakcie pracy z przegrzaną paszą, w wyniku wdychania pyłu zanieczyszczonego drobnymi (ok. 1 µm średnicy) zarodnikami promieniowców.

Występujące pospolicie w pyłach organicznych pałeczki Gramujemne pochodzenia roślinnego i zwierzęcego mogą być przyczyną chorób alergicznych, a także wytwarzają endotoksynę wywołującą reakcję zapalną w płucach. Szczególne znaczenie chorobotwórcze ma epifityczny gatunek Pantoea agglomerans (synonimy: Erwinia herbicola, Enterobacter agglomerans), występujący pospolicie na powierzchni wielu roślin, a zwłaszcza na ziarnie zbóż i na przylistkach bawełny. Bakterie te występują w dużej liczbie w powietrzu zanieczyszczonem pyłem zbożowym i innymi pyłami organicznych. W Polsce są one częstą przyczyną AZPP u rolników oraz innych osób zawodowo narażonych na pył zbożowy i pyły z niektórych innych roślin uprawnych, np. z konicyzyny

Grzyby

Największe zagrożenie stanowią grzyby niższe, popularnie określane jako pleśnie, które są częstą przyczyną alergicznych chorób układu oddechowego (AZPP, astmy oskrzelowej, nieśytu nosa) u rolników i innych osób narażonych na pył ze spleśniałych surowców i materiałów. Tak zwane grzyby polowe rozwijające się na roślinach (Alternaria, Cladosporium) wytwarzają w sezonie letnim duże ilości zarodników, które mogą być przyczyną chorób alergicznych u rolników wykonujących prace polowe.

Znacznie większe zagrożenie stanowią grzyby przechowywane, głównie z rodzajów Aspergillus i Penicillium, rozwijające się na składowanych surowcach roślinnych i zwierzęcych w warunkach podwyższonej wilgotności i temperatury, a także na zawałuconych ścianach budynków i powierzchniach różnych przedmiotów. Szczególne znaczenie chorobotwórcze ma kropidlak popielaty (Aspergillus fumigatus), który może być przyczyną grzybic pluc (aspergilozy). Grzyby pleśniowe mogą wytwarzać również substancje toksyczne, takie jak mikotoksyny (aflatoksyny, ochratoksyny, trichoteceny i inne), glukany i toksyczne metabolity lotne.

Najczęstszą przyczyną zawodowych grzybic skóry są trzy gatunki grzybów - dermatofitów z rodzaju Trichophyton: występujący u bydła grzyb brodawkowaty (Trichophyton verrucosum); rozpowszechniony wśród licznich ssaków, a zwłaszcza gryzoni (myszy, szczury, świinki morskie, króliki, szynszyle) grzyb Trichophyton mentagrophytes oraz grzyb czerwony (Trichophyton rubrum) występujący u ludzi.

Pasożyty wewnętrzne
Wśród pierwotniaków pasożytniczych, największym zagrożeniem w klimacie umiarkowanym jest zarodnikowiec Toxoplasma gondii, pasożytujący u wielu gatunków kręgowych i u człowieka. Szczególnym zagrożeniem dla rolników, rybaków, leśników i pracowników parków narodowych pracujących w strefie tropikalnej są pasożytnicze pierwotniaki przenoszone przez krwiopijne stawonogi: zarodźce malarii (Plasmodium) i świadrowce wywołujące śpiączkę (Trypanosoma). Ludziom tym zagrozają również pasożytnicze robaki, których inwazyjne larwy wnikają do organizmu człowieka przez skórę lub przenoszone są przez krwiopijne stawonogi. Szczególne niebezpieczeństwo stwarzają przywry z rodzaju Schistosoma (S. haematobium, S. mansoni, S. japonicum), powodujące schistosomatozę, oraz nicienie Onchocerca volvulus powodujące ślepotę rzeczną w Afryce.

Rośliny

Bezpośredni kontakt z roślinami w czasie prac hodowlanych i zbioru bywa często przyczyną stanów zapalnych skóry (dermatitis phytoptica) u rolników, ogrodników i zielarzy. Niektóre kwiaty ozdobne, takie jak chryzantemy, frezje, dalie, alstromerie, hiacynty i narcyzy, wykazują właściwości alergizujące lub toksyczne, powodując stany zapalne skóry u ogrodników.

Właściwości alergizujące wykazują również pospolite warzywa, takie jak selery, czosnek, cebula, marchew, ogórek, salata i ziemniaki, które są często przyczyną wyprysku kontaktowego u pracowników gastronomii, sprzedawców i gospodyń. Nasiona fasoli (Phaseolus vulgaris) zawierają toksalbuminę fazynę, mogącą wywoływać tak zwany „świerzb fosolowy” u pracowników fabryk konserw. Właściwości alergizujące wykazuje również słonecznik (Helianthus annuus), ruta zwyczajna (Ruta graveolens) i gryka (Fagopyrum). W ostatnim ćwierćwieczu dowiedziono, że pył drewny, zwłaszcza z drewna liściastego (dąb, buk) wykazuje działanie rakotwórcze i może być przyczyną poważnego gruczolakoraka nosa u stolarzy, cieśli i innych pracowników przemysłu drzewnego. Kontakt z pyłem uwalniającym się do powietrza podczas obróbki drzew egzotycznych (żeber, mahoń, palisander), tui (Thuja plicata) i niektórych innych gatunków drzew stwarza wśród narażonych drwali i pracowników przemysłu drzewnego ryzyko zachorowania na choroby układu oddechowego (astma, alergiczny nieżyt nosa) i skóry.

Zwierzęta

Uwalniane do powietrza cząstki ciała i wydaliny pajęczaków, owadów i skorupiaków mogą być przyczyną zawodowego astma, alergicznego nieżytu nosa, zapalenia skóry i spojówek. Szczególnie zagrożenie dla rolników, magazynierów, pracowników przemysłu spożywczego i innych osób narażonych na pyły organiczne stanowić mogą „przechowalniany” roztoczek owłosiony (Lepidoglyphus destructor) i roztoczek domowy (Glycyphagus domesticus). Źródłem chorobotwórczych alergenów mogą być również niektóre owady żerujące na zmagazynowanych produktach rolnych - takie jak wołek zbożowy (Sitophilus granarius) lub mącznik młynarek (Tenebrio molitor), a także owady udomowione - pszczoły (Apis mellifica) i jedwabniki morwowe (Bombyx mori).

U leśników i drwali spotyka się przypadki alergii oddechowej i skórnej na włoski parzące, wydaliny i wydzieliny gąsienic niektórych gatunków motyli - szkodników drzewostanów: brudnicy nieparki (Lymatia dispar), znamionówki (Orgyia pseudotsugata), kuprowki rudnicy (Europothis chrysorrhoea) i korowódkę sosnową (Thaumetopoea pinivora). Objawy alergiczne obserwowano też u osób zatrudnionych przy wyrobie przetworów spożywczych ze skorupiaków - krabów (Chionoecetes opilio) i homarców (Nephrops norvegicus).

Niektoře stawonogi mogą czynnie atakować ludzi w środowisku pracy (głównie rolników i leśników), co może powodować reakcje zapalne skóry i objawy ogólne, a niekiedy również wszczepienie chorobotwórczych zarazków. Do grupy tej należą liczne kleszcze (Rys.35), drobne roztocze, jadowite pająki, komary, muchy piaskowe.
Rysunek 35. Kleszcz pospolity (Ixodes ricinus)

Rybacy morscy i marynarze narażeni są na porażenie jadem ryb, zwłaszcza płaszczek (Dasyatidae), ryb głowaczowatych (Scorpaenidae) oraz ryb okoniokształtnych (Trachinidae, Chaetodontidae), natomiast rolnicy, plantatorzy i leśnicy w strefie klimatu ciepłego zagrożeni są przez liczne gatunki jadowitych węży.

Duże znaczenie ma bierne uczulenie na alergeny zwierząt kręgowych, najczęściej poprzez wdychanie aerozoli zawierających te alergeny zwierzęce, a niekiedy także przez skórę. Tak na przykład, u pracowników wytwarzających mączkę rybną i konserwy z lososia stwierdzano przypadki astmy i AZPP w wyniku uczenia na płytkę, lub aerozol kropelkowy zawierający białko ryb. Hódowcy ptaków i pracownicy kombinatów drobiarskich narażeni są na wdychanie pyłów zawierających alergizujące cząstki skórek, naskórka, wydzielin i wydalin ptaków. Znaną jednostką chorobową jest „płuco hódowcy ptaków”, stanowiącą specyficzna formę AZPP, powstałą w wyniku uczulenia na białko ptasie. Alergia ta jest najczęstszą chorobą w hodowcach gołębi i papużek falistych, ale występuje również u osób mających zawodowy kontakt z kurami, kaczkami, indykami i bażantami.

Alergeny ssaków występują w uwalniających się do powietrza cząstkach naskórka, sierści i kału oraz w kropelkach słiny, mleka i moczu. Największe znaczenie mają alergeny białkowe wytwarzane przez gryzoni laboratoryjne, które są przyczyną specyficznego zespołu, określanego jako LAA (Laboratory Animal Allergy).

Choroba ta, charakteryzuje się występowaniem astmy oraz odczynami zapalnymi nosa, spojówek i skóry. Pojawia się ona najczęściej w wyniku kontaktu ze szczurami i myszami, rzadziej po kontaktie ze świnkami morskimi i królikami. Wśród rolników najczęściej stwierdza się uczulenie na alergeny naskórka i sierści krów oraz moczu świń. Zawodową astmę oskrzelową stwierdzono również u robotników wyprowadzających pędzeli z sierści różnych zwierząt, u pracowników ogrodnictwa produkujących sproszkowaną masę jajeczną oraz u pracowników przemysłu farmaceutycznego w rezultacie wdychania sproszkowanych enzymów (pepsyna, trypsyna), otrzymywanych z różnych organów ssaków.

Wykrywanie i pomiary liczbowe biologicznych czynników środowiska pracy

Zasadność podejrzenia, że objawy chorobowe występujące u pracownika lub u grupy pracowników są wywołane przez określony czynnik biologiczny, należy potwierdzić dwoma sposobami.

Pierwszy sposób, bardzo istotny dla zapewnienia bezpieczeństwa pracy załogi, polega na wykryciu danego czynnika w środowisku pracy i określaniu rozmiałów ekspozycji. Ze względu na fakt, że większość szkodliwych czynników biologicznych przenosi się drogą powietrzną, podstawowe znaczenie ma tu mikrobiologiczne badanie powietrza. Mikrobiologiczne badanie powietrza wykonuje się najczęściej za pomocą następujących metod:

- zderzeniowych (impakcyjnych), w których pobiera się za pomocą pompy ssącej próbę powietrza o określonej objętości na płytkę agarową przez wąską szczelinę lub dyszę, a następnie po inkubacji liczy się wyrosłe kolonie na tej podstawie określa stężenie drobnozustrojów w CFU (Colony Forming Units) na 1 m3 powietrza,
CFU - skrót od "Colony Forming Units" (jednostki tworzące kolonie), służący jako miara stężenia drobnoustrojów w 1 m³ powietrza

- filtracyjnych, w których posiewu dokonuje się dwustopniowo: w pierwszym etapie pobiera się próbę powietrza do płynu pochłaniającego w płuczce lub na filtr membranowy, a w drugim etapie posiewa się płyn, lub ekstrakt z filtra na pożywkę agarową i po inkubacji liczy się wyrosłe kolonie.

Do tej pory brak jest powszechnie uznanych norm określających dopuszczalne stężenie drobnoustrojów w powietrzu środowiska pracy.

Zaobserwowano, że choroby układu oddechowego u pracowników występują najczęściej w przypadku stałego narażenia na stężenia drobnoustrojów w powietrzu powyżej 100 tysięcy CFU/m³, a zatem ze względów zdrowotnych wartość ta nie powinna być przekraczana.

Drugi sposób polega na bezpośrednim stwierdzeniu obecności czynnika biologicznego w organizmie chorego pracownika poprzez badanie mikroskopowe lub izolację na pożywkę mikrobiologiczną albo pośrednim ustaleniu kontaktu z tym czynnikiem poprzez stwierdzenie dodatniej reakcji immunologicznej chorego na antygen danego czynnika.

Dla stwierdzenia choroby zakaźnej podstawowe znaczenie mają badania serologiczne ze swoistym antygenem, wśród których najczęściej wykonuje się: odczyn aglutynacji, odczyn wiązania dopełniacz, odczyn immunofluorescencji i test immunoenzymatyczny (ELISA). Dla stwierdzenia choroby alergicznej najczęściej wykonuje się: testy skórne (środkórnego lub punktowego - prick), test radioimmunoabsorpcji (RAST), test precypitacji w żelu, test zahamowania migracji leukocytów, test ELISA oraz test inhalacyjny (prowokacji wziewnej).

Główne kierunki i zasady profilaktyki i zwalczania czynników biologicznych

W celu zmniejszenia skutków narażenia na biologiczne czynniki szkodliwe środowiska pracy, stosowane są następujące działania medyczne, technologiczne i organizacyjne:

- szczepienia ochronne wysoce narażonych grup pracowników, stosowane m.in. do zabezpieczenia pracowników służby zdrowia przed wirusem zapalenia wątroby typu B (HBV), wirusem różyczki, prątkami gruźlicy i innych drobnoustrojami oraz do zabezpieczenia szczególnie narażonych grup rolników i leśników przed chorobami odzwierzęcymi (brucelosa, leptospirozy, kleszczowe zapalenie mózgu, wścieklizna);
- stała opieka lekarska i badania profilaktyczne narażonych grup pracowników;
- szczególne zabezpieczenie przy pracy z czynnikami wysoce zakaźnymi, obejmujące m.in. izolację i odpowiednie oznakowanie pomieszczeń, w których takie prace są prowadzone, stosowanie odpowiedniej wentylacji i obiegu powietrza zapewniającego jałowość pomieszczeń, gruntowną dezynfekcję, efektywne odprowadzanie i niszczenie odpadów; laboratoria powinny być zaopatrzone w odpowiednie boksy, komory z laminarnym nawiewem powietrza i inne urządzenia zabezpieczające; pracodawca powinien zapewnić pracownikom apteczki, środki odkurzające, odzież ochronną oraz możliwość bezpiecznego przebierania się i kąpieli w izolowanych pomieszczeniach;
- indywidualne środki ochronne (ochrony osobiste) w rolnictwie i innych zawodach, gdzie występuje narażenie na pyły organiczne: respiratory nowej generacji z wymuszonym przepływem powietrza (klasy P3) skutecznie chroniące drogi oddechowe przed szkodliwymi bioaerozolami, a także maski osłaniające twarz, fartuchy, kombinezony ochronne, rękawice i długie buty;
- zapobieganie rozwojowi drobnoustrojów i roztoczy w składowanych surowcach poprzez: szybki zbiór zboża i siiana z pól, zapobiegając zamoknięciu i samozagrzewaniu sprzyjającemu 101
rozwojowi alergizujących drobnoustrojów; suszenie pasz za pomocą wentylatorów, lub przenośnych suszarek; właściwe przechowywanie surowców roślinnych w warunkach niskiej temperatury i wilgotności; stosowanie nowych technologii przechowywania pasz w atmosferze CO2 w hermetycznych silosach;

- zapobieganie rozwojowi potencjalnie szkodliwych grzybów i bakterii w różnych elementach poszczególnych środowisk pracy (takich jak np. stemple w kopalniach, emulsje olejowe w przemysłach maszynowym, zawilgocone materiały archiwalne) przez efektywne stosowanie nieszkodliwych dla ludzi biocydów, niedopuszczanie do zawilgozenia ścian budynku i przedmiotów, skuteczną wentylację pomieszczeń;

- utrzymywanie w czystości i okresowa dezinfekcja pomieszczeń inwentarskich, usuwanie szkodliwego bioaerozolu z powietrza metodą mgiełną (fogging), skrapianie ściółki i surowców płynami zmniejszającymi emisję pylu;

- doskonalenie systemów wentylacyjnych w przemysłowym i rolniczym środowisku pracy, hermetyzacja i automatyzacja procesu produkcyjnego, stosowanie bezpiecznych maszyn nie emitujących bioaerozoli;

- oświata zdrowotna, realizowana poprzez: kursy, wykłady, pogadanki, projekcje filmów, rozpowszechnianie kaset wideo, książek, broszur, a także konferencje itp.; wykazano, że rolnicy, którzy zdają sobie sprawę z zagrożenia, jakie stanowi kontakt z pyłem ze spleśniałego surowca, rzadziej chorują na „płuco rolnika” i inne choroby wywołane przez pył.

Zagrożenia biologiczne - Środki ochrony indywidualnej

Redukcja ryzyka zawodowego i ochrona pracowników przed szkodliwymi czynnikami biologicznymi, występującymi w środowisku pracy, a szczególnie w przemyśle rolno-spożywczym, przy usuwaniu odpadów, oczyszczaniu ścieków i w medycynie, stanowi poważny problem.

Zasady higieny i ochrony indywidualnej pracowników w związku z narażeniem na czynniki biologiczne we wsiu pracy określone zostały w dyrektywie 2000/54/EC. Ogólne zasady wskazują na konieczność wyposażenia pracujących, odpowiednio do oceny stopnia ryzyka zawodowego, w odzież roboczą lub odzież ochronną oraz inne wyposażenie ochronne. Niezbędne jest również udostępnienie pracownikom odpowiednich środków higienicznych i odkażających, a także opracowanie właściwych procedur składowania, czyszczenia, odkazania i naprawiania odzieży roboczej oraz środków ochrony indywidualnej.

Z zaleceń dyrektywy wynika, że przy narażeniu na czynniki biologiczne z 1. grupy ryzyka nie jest konieczne stosowanie środków ochrony indywidualnej, a sugeruje się tam stosowanie jedynie odzieży roboczej. Przy narażeniu na czynniki biologiczne z 2. grupy ryzyka jest natomiast konieczne stosowanie odpowiedniej odzieży roboczej, a na czynniki biologiczne z 3. grupy ryzyka – odpowiedniej odzieży ochronnej. W warunkach narażenia pracowników na działanie czynników biologicznych, zaklasyfikowanych do 4. grupy ryzyka, należy stosować zgodnie z zaleceniami odpowiednie sprzęty ochrony układu oddechowego, ochrony oczu i twarzy oraz obuwia ochronnego. W przypadku zagrożenia, jakie stanowi narażenie na działanie czynników biologicznych, należy stosować odpowiednie środki ochrony indywidualnej.

Wymagania, związane ze stosowaniem znaków ostrzegawczych, dostępem do stref kontrolowanych, stosowaniem odzieży i odkazaniem, przedstawiono w tabeli 9.
Tabela 9

Wymagania wobec środków ochrony indywidualnej układu oddechowego

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Znak: zagrożenie skażeniem biologicznym</td>
<td>tak</td>
<td>tak</td>
<td>tak</td>
</tr>
<tr>
<td>Ograniczenie dostępu dla pracowników</td>
<td>zalecane</td>
<td>tak</td>
<td>tak, przez komorę powietrzną</td>
</tr>
<tr>
<td>Odzież personelu</td>
<td>odzież robocza</td>
<td>odzież ochronna</td>
<td>odzież ochronna (w całości zmieniana)</td>
</tr>
<tr>
<td>Środki ochrony układu oddechowego, oczu, twarzy, rąk i stóp</td>
<td>tak</td>
<td>tak</td>
<td></td>
</tr>
<tr>
<td>Dostępność środków higienicznych i odkażania</td>
<td>tak</td>
<td>tak</td>
<td></td>
</tr>
</tbody>
</table>

Środki ochrony indywidualnej układu oddechowego składają się najczęściej z kombinacji dwóch części: twarzowej (maski lub półmaski) oraz filtrującej. Część twarzowa może być barierą dla bioaerosolu i elementem konstrukcyjnym maski. Część filtrująca może być również częścią twarzową, np. w półmaskach filtrujących. Innym rodzajem środka ochronnego jest sprzęt izolujący od atmosfery środowiska pracy. Maska w tym przypadku połączona jest z aparatem węglowym sprężonym powietrza lub aparatem powietrznym butlowym.

Ze względu na ochronę układu oddechowego czynnikiem stwarzającym zagrożenie są tzw. aerozole biologiczne (bioaerosole). Aerozole biologiczne są składnikami, w których fazą rozproszoną są mikroorganizmy w postaci cząsteczek właściwych. Mikroorganizmy mogą być barierą dla bioaerosolu, np. w półmaskach filtrujących. Konieczne jest zawsze zastosowanie odpowiednich ochronnych środków ochrony, w tym zastosowanie ochronnej maski.

Dobór środków ochrony indywidualnej układu oddechowego do zagrożeń, występujących w postaci aerozoli biologicznych, zależy od: rodzaju aerozolu, stężenia fazy rozproszonej i jej składu, wielkości cząsteczek, stopnia skidliwości, wyrażonego przez wartość NDS dla składnika niebiologicznego, a także warunków mikroklimatycznych środowiska pracy, np. wilgotności powietrza. Dobór środków ochrony zależy również od pewności lub prawdopodobieństwa występowania w bioaerosolu materiału biologicznego, zakwalifikowanego do jednej z 4 grup ryzyka. Nie bez znaczenia jest również dobór tych środków pod kątem dopasowania części twarzowej maski do twarzy i głowy pracownika. Podczas
użytkowania środków ochrony indywidualnej układu oddechowego powietrze przenika w fazie wdechu przez część filtrującą lub z aparatów. Efektem niepożądannym jest przenikanie powietrza, a tym samym bioaerozolu, przez nieszczelności części twarzowej maski do dróg oddechowych. Dobór komplikuje się, gdy przy zastosowaniu półmasek filtrujących oraz półmasek skompletowanych z filtrami klasy: P1, P2, P3 stosuje się ochrony oczu i twarzy. Części twarzowe w postaci masek, półmasek lub ćwierćmasek gumowych muszą ponadto spełniać wymagania co do łatwości ich czyszczenia i dezynfekcji, a także możliwości wyjałania. Środki ochrony in-dywidualnej układu oddechowego mają odpowiednią klasę ochronną i zakres stosowania ścieśniej określony przez producenta w instrukcji użytkowania.

Najpowszechniej (np. wśród pracowników ochrony zdrowia) stosowane są półmaski filtrujące. W celu doboru klasy ochronnej półmasek, stosowanych do ochrony przed bioaerozolem, wprowadzono klasyfikację, której podstawą są ocena skuteczności materiału filtracyjnego i szczelność.

Ze względu na przepuszczalność materiału filtracyjnego dla cząstek modelowych o różnej wielkość ustalono trzy zakresy skuteczności filtracyjnej:
- mała skuteczność – ≥ 1 µm
- średnia skuteczność – 0,5 ÷ 1 µm
- duża skuteczność – 0,3 ÷ 0,5 µm.

Maski o małej skuteczności mogą być stosowane do prac pielęgnacyjnych w służbie zdrowia oraz typowych w czystych miejscach. Maski o średniej skuteczności mogą być stosowane w służbie zdrowia, np. przy obsłudze nebulizatorów, a maski o dużej skuteczności – w chirurgii laserowej. Maski powinny być odpowiednio oznakowane, zależnie od ich stopnia skuteczności, i mieć deklarację zgodności z wymaganiami. Znakowanie po-winno zawierać: nazwę, znak fabryczny, logo, numer klasifikacyjny, normy lub dokument odniesienia – symbol klasy ochronnej (P1, P2, P3) i oznaczenie zastosowania (S – aerozol z cząstek stałych i SL – aerozol z cząstek stałych i ciekłych).

Symbole klasy ochronnej (P1, P2, P3) oznaczają:
- P1 – mały stopień ochrony
- P2 – średni stopień ochrony
- P3 – duży stopień ochrony.

Sprzęt filtrujący można stosować jedynie wtedy, gdy nie występuje niedobór tlenu w powietrzu. Jeżeli występuje niedobór tlenu w powietrzu, należy zastosować sprzęt izolujący.

Konieczność zastosowania sprzętu izolującego, w skrajnym przypadku w połączeniu z ubraniem gazoszczelnym, może wynikać ze szczególnej agresywności drobnoustrojów lub braku pewnych informacji na temat ich oddziaływania na organizm ludzki. W pomieszczeniach laboratoryjnych, w których przeprowadza się badania nad tego typu wirusami lub bakteriami, stosuje się specjalnie rozgałęzione linie sprzężonego powietrza, do których osoby wykonujące eksperymenty podłączają się za pomocą szybkozłącza i ciśnieniowego przewodu, doprowadzającego powietrze pod kombinezon i do części twarzowej.

Odzież ochronna

Ryzyko, związane z narażeniem pracowników na działanie czynników biologicznych, występuje na wielu stanowiskach pracy, m.in.: w placówkach służby zdrowia, laboratoriach diagnostycznych i weterynaryjnych, przy pracach związanych z rolnictwem, oczyszczaniem ścieków i usuwaniu odpadków. Chorobotwórcze drobnoustroje szczególnie zagrażają personelowi medycznemu. Dlatego też w lecznictwie zagrożenie chorobami zakaźnymi, przenoszonymi przez krew podczas wykonywania zabiegów medycznych, spowodowało potrzebę przywiązywania dużej wagi do ochrony przed zakażeniem zarówno pacjentów, jak i pracowników. Największe ryzyko zakażenia wirusami zółtaczki zakaźnej typu B i typu C oraz wirusami niedoboru odpornościowego (HIV) występuje w bloku operacyjnym, na oddziale intensywnej opieki medycznej, w stacji dializ, laboratorium diagnostycznym oraz podczas wykonywania zabiegów chirurgii szczękowej, gdyż tam najczęściej dochodzi do bezpośredniego kontaktu z: krwią, płynami uwodrobniającymi, bakteriami i in. Przy braku skutecznych środków ochrony indywidualnej, stanowiących skuteczną barierę dla krwi i drobnoustrojów.
Środki ochrony indywidualnej dla personelu medycznego spełniają podwójną rolę:
– zapobiegają zakażeniu pacjenta mikroorganizmami, przenoszonymi z personelu medycznego na obszar pola operacyjnego podczas wykonywania zabiegów operacyjnych
– zapobiegają kontaktowi powierzchniowemu mikroorganizmów, znajdujących się we krwi i innych płynach ustrojowych pacjentów, ze skórą personelu.
Materiały barierowe, przeznaczone na odzież ochronną dla lekarzy i pomocniczego personelu medycznego, muszą przede wszystkim spełniać funkcję ochronną, tzn. zabezpieczać przed przenikaniem szkodliwych dla zdrowia czynników biologicznych i osiadaniem ich na skórze. Przez pojęcie barierowości, w odniesieniu do wyrobów włókniennych, należy rozumieć zespół cech tych wyrobów, nadających jedynie materiały powloczone warstwy sztucznego lub laminowane folią.
Niedawno na światowe rynki włókieniowych materiałów barierowych wprowadzono wyroby nowej generacji, które łączą cechy ochronne z dobrymi właściwościami użytkowymi, gwarantującymi poczucie komfortu użycia. Są to wyroby wielowarstwowe, jednorazowego lub wielokrotnego użytku, powleczone poliuretanowymi warstwami paroprzepuszczalnymi, laminowane mikroporowatymi foliami lub paroprzepuszczalnymi membranami.
Wśród materiałów jednorazowego użytku występują włókniny poliestrowe lub poliestrowo-żelazoowe, pokryte powłoką z tworzywa sztucznego, włókniny polipropylenowe laminowane mikroporowatymi foliami poliolefinowymi oraz wielowarstwowe włókniny polipropylenowe z mikroporowatymi powłokami z tworzywa sztucznego.
Na świecie prawie 70% produkcji materiałów włókieniowych, stosowanych na środki ochrony indywidualnej dla służby zdrowia (maski, nakrycia głowy, ubrania, fartuchy chirurgiczne i ochraniacze na buty), stanowią materiały przeznaczone na wyroby jednorazowego użytku, a 30% – materiały wielokrotnego użytku. Wielkość wskaźników charakteryzujących właściwości ochronne jest jednakowa dla obu grup wyrobów. Różnią się one natomiast wielkością wskaźników określających właściwości fizykomechaniczne i użytkowe materiałów.
Odzież chroniąca przed czynnikami biologicznymi zapobiega kontaktowi powierzchni skóry człowieka z mikroorganizmami, wywierającymi szkodliwy wpływ na organizm ludzki, oraz ich strukturami. Podczas doboru odzieży należy najpierw uwzględnić grupę, do której należy czynnik biologiczny. Następnie należy ustalić rodzaj wykonywanej przez pracownika czynności (praca w laboratorium, wykonywanie zabiegów medycznych, np. w szpitalu, praca w przemyśle). Z kolei, należy określić natężenie czynnika biologicznego, czyli czy były to:
– przypadkowy kontakt z niewielką ilością płynów ustrojowych, aerozoli biologicznych lub kropli cieczy
– rozbrzygicie cieczy, zawierających szkodliwe dla zdrowia czynniki biologiczne
– płyny pod znacznym ciśnieniem.
W przypadku narażenia pracowników na działanie czynników biologicznych z 4. grupy lub czynników, których oddziaływanie na organizm ludzki nie jest znane, zalecane jest stosowanie odzieży całkowicie izolującej organizm człowieka (kombinezonów gazoszczelnych).

Rękawice ochronne

Zadaniem rękawic chroniących przed zagrożeniami biologicznymi w postaci mikroorganizmów i substancji przez nie wytwarzanych jest niedopuszczenie do kontaktu czynnika szkodliwego ze skórą użytkownika. Rękawice chroniące przed czynnikami chemicznymi (spełniają wymagania odporności na przenikanie substancji chemicznych) stanowią również skuteczną ochronę przed zagrożeniami mikrobiologicznymi. W związku z tym, do ochrony rąk przed czynnikami biologicznymi mogą być stosowane szczelne rękawice,
wykonane z kauczuku naturalnego i kauczuków syntetycznych, tworzyw sztucznych i materiałów powlekanych. Rękawice, które najczęściej są stosowane do ochrony rąk przed mikroorganizmami chorobotwórczymi, to rękawice wykonane z gumy naturalnej o różnej grubości, w zależności od warunków pracy na danym stanowisku.

Osobną grupę rękawic stanowią tzw. rękawice medyczne, których głównym zadaniem jest ochrona nie tylko pacjenta, lecz i użytkownika (personel medyczny) przed zanieczyszczeniami mikrobiologicznymi.

Rękawice medyczne dzielą się, w zależności od przeznaczenia, na:
- rękawice chirurgiczne
- rękawice do badań i zabiegów.

Rękawice chirurgiczne muszą być sterylne i mają anatomiczny kształt. Przeznaczone są do stosowania w chirurgii inwazyjnej. Ze względu na wymaganie precyzji oraz pewności chwytu bardzo istotne jest właściwe dopasowanie rozmiaru rękawicy do ręki.

Rękawice medyczne mogą być wykonane z:
- lateksu kauczuku naturalnego
- lateksu kauczuku syntetycznego
- mieszanin kauczuków naturalnych i syntetycznych
- polichlorku winylu
- polietylenu.

Rękawice medyczne najpierw są wykonywane z lateksu kauczuku naturalnego. Powinny one być szczelne oraz charakteryzować się odpowiednimi właściwościami mechanicznymi, takimi jak: siła zrywająca przed przyspieszonym starzeniem i po nim oraz siła zrywająca szew. Wymagane wartości wymienionych parametrów mechanicznych zależą od:
- rodzaju materiału zastosowanego do produkcji rękawic (lateks kauczuku naturalnego, lateks kauczuku syntetycznego, mieszanki kauczuków)
- sposobu wytworzenia rękawicy (rękawice ze szwami lub bez); rękawice medyczne ze szwem są otrzymywane przez łączenie płaskich powierzchni materiałów, np. metodą zgrzewania
- przeznaczenia (rękawice chirurgiczne, rękawice do badań i zabiegów).

Rękawice medyczne muszą również spełniać wymaganie niewypluywania negatywnie na organizm ludzki. W przypadku stosowania rękawic wykonanych z lateksu kauczuku naturalnego może wystąpić u użytkownika podrażnienie skóry lub alergia na ten materiał.

W Polsce dostępne są m.in. sterylne hipoalergiczne rękawice medyczne, wykonane z lateksu kauczuku naturalnego. Niektóre z dostępnych rękawic są pudrowane, inne są żelowane.

Kryterium określającym konieczność stosowania rękawic jest narażenie rąk na działańie czynników biologicznych. Ponieważ ręce należą do najbardziej podatnych na urazy mechaniczne, w tym – skaleczenia i otarcia, są one szczególnie narażone na działanie mikroorganizmów.

Obuwie ochronne

Do ochrony przed mikroorganizmami stosuje się szczelne obuwie w całości z gumy lub tworzywa. W zależności od potrzeb obuwie może być wyposażone w podnoski o odpowiedniej wytrzymałości na uderzenia i ściskanie, ochraniające palce stóp.

Ze względów medycznych obuwie powinno odpowiadać normom higienicznym, aby mogło być poddawane rutynowemu codziennemu myciu ręcznemu lub termiczno w maszynie myjąco-
dezynfekującej i, kiedy trzeba, dezynfekcji (PN-0-91062: 1999). Ze względu na bezpieczeństwo pracy obuwie powinno być antyelektrostatyczne i mieć zabezpieczenie przed poślizgiem. Powinno także być wygodne i stabilne. Obuwie jest wykonywane w kolorze białym.

Kryterium określającym konieczność stosowania obuwia chroniącego przed czynnikami biologicznymi jest występowanie na podłożu cieczy, zawierającej niebezpieczne czynniki biologiczne, lub zagrożenie połaniem nóg taką cieczą. Dobór obuwia jest uzależniony (podobnie jak w przypadku rękawic) od jego przeznaczenia. Można więc wyróżnić:
- obuwie dla pracowników bloków operacyjnych szpitali
- obuwie stosowane w przemyśle.

Istotnym parametrem obuwia przeznaczonego do stosowania w służbie zdrowia jest możliwość poddawania go rutynowej dezynfekcji. Dobierając obuwie przeznaczone do stosowania w przemyśle, obok odporności na przenikanie drobnoustrojów należy uwzględnić również jego odporność mechaniczną.

Sprzęt ochrony oczu i twarzy

Ponieważ ochrona przed czynnikami biologicznymi, zakwalifikowanymi do 2. i 3. grupy, polega na niedopuszczeniu lub ograniczeniu do minimum ich kontaktu ze skórą lub oczami, do ochrony przed cieczami, aerozolami lub parami, zawierającymi niebezpieczne czynniki biologiczne, może być stosowany sprzęt ochronny w postaci osłon twarzy lub gogli. Sprzęt ten powinien się charakteryzować taką samą konstrukcją, jak stosowany do ochrony przed czynnikami chemicznymi, oraz powinien spełniać wymaganie chronienia przed czynnikami biologicznymi w postaci kropel, pary lub gazów. Gogle oraz osłony twarzy powinny też spełniać wymagania dotyczące odporności na działanie środków dezynfekcyjnych, a ich konstrukcja powinna być pozbawiona elementów umożliwiających gromadzenie się aerozoli biologicznych.

Osłony twarzy powinny być wyposażone w panoramiczną szybę, stanowiącą skuteczną barierę, uniemożliwiającą kontakt cieczy z twarzą pracownika. Dodatkowo mogą być wyposażone w tzw. naczółek, zapewniający ochronę również z góry.

Sprzęt do ochrony oczu i twarzy może być stosowany jedynie w przypadku narażenia pracownika na czynniki biologiczne z 1., 2. lub 3. grupy, pod warunkiem braku konieczności stosowania sprzętu do ochrony układu oddechowego.

Kryterium określającym konieczność stosowania tego sprzętu jest narażenie oczu i twarzy na działanie szkodliwych czynników biologicznych. Sposób postępowania podczas doboru sprzętu do ochrony oczu i twarzy do czynników biologicznych jest taki sam jak w przypadku czynników chemicznych i pyłów.

Podstawowym kryterium doboru sprzętu jest forma występowania czynnika biologicznego. W zależności od formy występowania czynnika biologicznego stosowane są:
- przy narażeniu na ciecz – osłony twarzy lub gogle
- przy narażeniu na pyły – gogle chroniące przed pyłami
- przy narażeniu na pary lub gazy – gogle chroniące przed gazami.

W przypadku zagrożenia czynnikami biologicznymi należy pamiętać, że osłony twarzy można stosować jedynie wówczas, gdy występuje tylko zagrożenie przypadkowym narażenia na działanie strumienia cieczy, np. podczas opróżniania zbiorników. Jeżeli jednak czynnik biologiczny występuje na stanowisku pracy również w postaci rozpylonych w powietrzu kropel cieczy, powinien zostać zastosowany sprzęt ochrony układu oddechowego, wyposażony w odpowiednie części twarzowe (maski czy kaptury).

Pyły
Pyły są jednym z głównych czynników szkodliwych występujących w środowisku pracy. Szkodliwe działanie pyłów na organizm człowieka może być przyczyną wielu chorób, w tym pylicy płuc i nowotworów.

Zgodnie z Kodeksem Pracy na wszystkich stanowiskach pracy powinny być prowadzone działania zmierzające do skutecznego ograniczania lub eliminowania ryzyka zawodowego wynikającego z narażenia na czynniki szkodliwe, w tym również na pyły.

Zapewnienie skutecznego ograniczania lub eliminowania ryzyka zawodowego, wynikającego z narażenia na pyły, wymaga:

- określenia rodzaju, stężenia i innych podstawowych parametrów pyłów emitowanych do środowiska pracy,
- dokonania oceny narażenia pracowników na szkodliwe działanie pyłów występujących w środowisku pracy,
- przeprowadzenia oceny ryzyka zawodowego pracowników narażonych na szkodliwe działanie pyłów występujących w środowisku pracy,
- zastosowania odpowiednich środków ochrony zbiorowej przed zapyleniem, umożliwiających eliminację zanieczyszczeń powietrza za środowiska pracy, a jeżeli nie jest to możliwe zastosowanie odpowiednich środków ochrony indywidualnej.

Pyły emitowane na stanowiskach pracy

Głównymi źródłami emisji pyłów w pomieszczeniach pracy są procesy technologiczne. W zależności od rodzaju zastosowanego procesu technologicznego, emitowane pyły charakteryzują się różnymi właściwościami. Do najbardziej pyłotwórczych procesów technologicznych należą: mielenie, kruszenie, przesiewanie, transport i mieszanie ciał sypkich. Jednakże najwięcej pyłów wysoko dyspersyjnych, najbardziej szkodliwych dla ludzi, powstaje w trakcie ostrzenia, szlifowania oraz polerowania.

Podstawę zarówno do oceny ryzyka zawodowego, jak i do doboru środków ochrony zbiorowej i indywidualnej stanowią takie podstawowe parametry pyłów, jak: stężenie, wymiary i kształt cząstek oraz skład chemiczny i struktura krystaliczna pyłów.

Właściwości pyłów emitowanych do środowiska pracy są ściśle związane z własnościami substancji, z których powstały. Poniżej przedstawiono ogólną charakterystykę substancji, których stosowanie w procesach technologicznych powoduje emisję do środowiska pracy szczególnie szkodliwych pyłów: włóknistych (azbestu, sztucznych włókien mineralnych, itp.), niewłóknistych (ditlenku krzemu, itp.). Zgodnie z rozporządzeniem ministra zdrowia i opieki społecznej z dnia 11 września 1996 r. (Dz.U Nr 121, poz. 571) [4], obecnie w Polsce za rakotwórcze dla ludzi uważa się wszystkie gatunki azbestu (aktynolit, amosyt, antofyllit, chryzotyl, krokidolit, tremolit), talk zawierający włókna azbestowe oraz procesy produkcyjne, w których są emitowane pyły drewna twardego (buk, dąb). Za prawdopodobnie rakotwórcze dla ludzi są uważane pyły antygorytu włóknistego i krzemionki krystalicznej (ditlenk krzemu krystaliczny).

Azbest jest nazwą handlową i odnosi się do sześciu minerałów włóknistych z grupy serpentynów (chryzotyl) i amfiboli (aktynolit, amosyt, antofyllit, krokidolit, tremolit). Minerały te źle przewodzą ciepło i są względnie odporne na działanie czynników chemicznych.

Główną przyczyną aktywności rakotwórczej azbestu są wymiary włókien respirabilnych Kształt włóknisty, a więc określoną właściwość fizyczną można uznać za czynnik rakotwórczy pod warunkiem, że włókno jest na tyle trwałe, iż może istnieć w środowisku biologicznym przez długi okres. Względnie dużą częstotliwość występowania międzybloników u pracowników narażonych na krokidolit można by więc tłumaczyć większą trwałością tych włókien w organizmie.

W ustawie o zakazie stosowania wyrobów zawierających azbest (z dnia 19 czerwca 1997r. Dz. U. Nr
101, poz.628 wraz ze zmianami) są określone zasady w celu wyeliminowania w Polsce produkcji, stosowania i obrotu wyrobami zawierającymi azbest.

Narażenie zawodowe na azbest może zatem w Polsce występować:

- w zakładach, które uzyskały tymczasową zgodę na produkcję wyrobów zawierających azbest, określoną corocznie w drodze rozporządzenia,
- podczas usuwania lub zabezpieczania wyrobów zawierających azbest w wielu gałęziach przemysłowych, w tym w budownictwie, w stoczniach, w przemyśle maszynowym, samochodowym, hutniczym, itd.

W rozporządzeniu ministra gospodarki z dnia 14 września 1998 r. (Dz.U. nr 138, poz. 895) są zawarte zasady dotyczące sposobów bezpiecznego użytkowania oraz warunków usuwania wyrobów zawierających azbest. Natomiast w rozporządzeniu ministra pracy i polityki socjalnej z dnia 2 kwietnia 1998 r. (Dz.U. nr 45, poz. 280) są określone zasady bezpieczeństwa i higieny pracy przy zabezpieczaniu i usuwaniu wyrobów zawierających azbest oraz program szkolenia w zakresie bezpiecznego użytkowania takich wyrobów.

Sztuczne włókna mineralne są wprowadzane na coraz szerszą skalę jako zamienniki azbestu. Wyroby zawierające sztuczne włókna mineralne są stosowane w budownictwie przemysłowym, mieszkaniowym oraz w zakładach wykorzystujących je do produkcji własnych wyrobów - zakłady ceramiki, zakłady lotnicze, elektrownie, stocznie, przemysł samochodowy, zakłady urządzeń gospodarstwa domowego.

Sztuczne włókna mineralne wykazują różnorodną trwałość w środowiskach biologicznych, a co za tym idzie również różny stopień szkodliwości w odniesieniu do ludzi.

Drewno jest materiałem o nierównomiernej budowie. Jego wygląd oraz właściwości fizyczne i mechaniczne (wytrzymałość) zmieniają się zależnie od kierunku anatomicznego (kierunek wzdłuż włókien, promienisty, styczny). Jedną z ważnych cech drewna jest jego twardość. Buk i dąb są zaliczane do drewna twardego [9].
Narażenie zawodowe na pyły drewna występuje głównie w zakładach: tartacznych, płyt i sklejek, stolarki budowlanej, meblarskich i wyrobów stolarskich, opakowań drewnianych, zapałczanych.

Pyły emitowane w przemyśle drzewnym charakteryzują się rozkładem wymiarowym cząstek do 5 mm, dlatego cząstki te są przede wszystkim zatrzymywane w jamie nosowej. Pyły emitowane podczas przerobu drewna twardego (takiego jak buk lub dąb) mogą być przyczyną nowotworów nosa i zatok przynosowych.

Ditlenek krzemu (SiO2) jest substancją polimorficzną występującą w naturze w różnych odmianach krystalicznych i bezpostaciowych. Odmiany krystaliczne określa się terminem wolna krystaliczna krzemionka. Pyły krzemionki krystalicznej są w Polsce uznawane za pyły prawdopodobnie rakotwórcze.
Do podstawowych odmian krystalicznych ditlenku krzemu należą: kwarc, krystobalit i trydymit. Rozpuszczalność w wodzie i płynach ustrojowych krystalicznych odmian ditlenku krzemu jest minimalna i uzależniona głównie od temperatury, pH roztworu, stopnia krystalizacji oraz wymiaru cząstek. Występujący w przyrodzie krystaliczny ditlenek krzemu jest bardzo szeroko stosowany w przemyśle chemicznym, szklarskim, ceramicznym, materiałów budowlanych i ściernych, optycznym, w odlewnictwie, itd. Jedna z odmian krystalicznych ditlenku krzemu (kwarc), dzięki właściwościom dielektrycznym i piezoelektrycznym, znajduje zastosowanie w przemyśle elektronicznym.

Bezpostaciowe odmiany ditlenku krzemu, takie jak diatomit i ziemia krzemionkowa są stosowane jako absorbent do oczyszczania wody, leków, soków, paliw, itp. Inne ważne wykorzystanie diatomitu w charakterze wypełniacza ma miejsce przy produkcji farb, nawozów, papieru, środków ochrony roślin, wyrobów z gmy syntetycznej i innych.
Szkodliwe działanie pyłów na człowieka

Ze względu na rodzaj działania biologicznego, szkodliwego dla człowieka, pyły można podzielić na:

- drażniący (cząstki węgla, żelaza, szkła, aluminium, związku baru, itp.)
- zwłókniający (cząstki kwarcu, krystobalitu, trydymitu, azbestu, talku, kaolinu, pyły rud żelaznych i z kopalń węgla),
- kancerogennym (azbest, ogniotrześć włókna ceramiczne do specjalnych celów),
- alergizującym (pyły pochodzenia roślinnego, zwierzęcego, leki, pyły arsenu, miedzi, cynku, chromu).

Ważnymi parametrami wpływającymi na skutki działania pyłu na organizm człowieka są: stężenie pyłu, wymiary i kształt cząstek oraz skład chemiczny i struktura krystaliczna, a także rozpuszczalność pyłu w płynach ustrojowych. Także właściwości osobnicze człowieka, zarówno genetyczne, jak i nabyte, mogą wpływać na jego wrażliwość na działanie pyłu. Ostateczny skutek szkodliwego działania pyłów przemysłowych zależy także od ciężkości wykonywanej pracy fizycznej.

Układ oddechowy można podzielić na kilka obszarów czynnościowych, które istotnie różnią się między sobą pod względem czasu zatrzymania pyłu w miejscach osadzania, szybkością i drogami jego eliminacji, a także reakcją patologiczną na pył. Najważniejsze z nich to:

- obszar górnych dróg oddechowych (nos, jama ustna, gardło, krtań),
- obszar tchawiczo-oskrzelowy (tchawica, oskrzel, oskrzeliki),
- obszar wymiany gazowej (pęcherzyki płucne).

Zaleganie pyłu w każdym z tych obszarów jest uzależnione od wymiaru jego cząstek, budowy dróg oddechowych i samego procesu oddychania (objętość wdechu, częstotliwość oddechów, prędkość przepływu powietrza w drogach oddechowych).

Ze względu na skutki zdrowotne najważniejsze są cząstki o średnicy poniżej 7um, umożliwiającej ich przeniknięcie do obszaru wymiany gazowej i w konsekwencji do możliwości rozwoju pylicy płuc, większości nowotworów oraz zapalenia pęcherzyków płucnych. Rodzaj choroby wywołanej oddziaływaniem pyłu na układ oddechowy zależy od rodzaju wdychanego pyłu. Narażenie na cząstki pyłów zawierających wolną krystaliczną krzemionkę może być przyczyną krzemicy. Wdychanie pyłów
włóknistych może prowadzić do pylicy płuc i nowotworów. Narażenie na cząstki pyłów drewna twardego (buk, dąb) może być powodem nowotworów nosa i zatok przynosowych.

Ocena narażenia zawodowego na pyły

Ocena narażenia jest złożonym procesem zmierzającym do określenia znaczenia zdrowotnego ujawnionych i ilościowo oznaczonych czynników szkodliwych obecnych w środowisku pracy, w celu ochrony przed chorobami pracowników i ludności będącej w zasięgu działania tych czynników. Kryteria niezbędne w ocenie narażenia to przede wszystkim obowiązujące przepisy prawa oraz wiedza z zakresu higieny pracy, toksykologii, epidemiologii, która umożliwia przygotowanie właściwych działań profilaktycznych.

Ocena narażenia na pyły polega na wykonaniu pomiarów stężeń pyłów na stanowiskach pracy, określeniu wskaźników ekspozycji na pyły w odniesieniu do całodziennego czasu pracy i porównaniu uzyskanej wartości wskaźników ekspozycji z wartościami najwyższych dopuszczalnych stężeń pyłów (NDS-ów).

Wyniki oceny narażenia są podstawą oceny ryzyka zawodowego oraz doboru środków ochrony przed zapyleniem.

Pomiary stężeń pyłów na stanowiskach pracy

W normie PN-EN 481:1998 podano zasady pobierania próbek powietrza, opierając się na założeniu, że do organizmu mogą się przedostawać cząstki znajdujące się w otoczeniu ust i nosa. Do pomiaru stężeń pyłów w środowisku pracy są stosowane metody wagowe, które umożliwiają odnieszenie masy pyłów osadzonych na filtrach pomiarowych do frakcji wymiarowych cząstek pyłów osadzających się w różnych odcinkach dróg oddechowych człowieka.

Aktualnie w Polsce do oznaczania zawartości pyłu całkowitego (PN-91/Z-04030/05) lub pyłu respirabilnego (PN-91/Z-04030/06) zawieszonego w powietrzu pomieszczeń pracy są stosowane metody filtracyjno-wagowe (grawimetryczne), natomiast do oznaczania zawartości włókien respirabilnych są wykorzystywane metody liczbowe (PN-88/Z-04202/02. Ważnym parametrem pyłów z uwagi na jego szkodliwe działanie jest zawartość wolnej krystalicznej krzemionki, która jest oznaczana zgodnie z metodami opisany mi w normach: PN-91/Z-04018/02, PN-91/Z-04018/03 i PN-91/Z-04018/04.

Jako pył całkowity przyjmuje się zbiór wszystkich cząstek otoczonych powietrzem w określonej objętości. Pył respirabilny to zbiór cząstek przechodzących przez selektor wstępny o charakterystyce przepuszczalności według wymiarów cząstek opisanej logarytmiczno-normalną funkcją prawdopodobieństwa ze średnią wartością średnią aerodynamicznej 3,5 ± 0,3 um i z geometrycznym odchylem standardowym 1,5 ± 0,1. Włókna respirabilne to włókna o długości powyżej 5 um o maksymalnej średnicy poniżej 3 mm i stosunku długości do średnicy > 3.

Pobieranie próbek powietrza może być wykonane za pomocą przyrządów stacjonarnych lub za pomocą przyrządów indywidualnych, zainstalowanych na pracowniku, wyposażonych w głowicę pomiarową usytuowaną w strefie oddychania.

Najwyższe dopuszczalne stężenia pyłów

Najwyższe dopuszczalne stężenie (NDS) jest to średnie stężenie ważone, którego oddziaływanie na pracownika w ciągu 8-godzinnego dobowego i tygodniowego, określonego w Kodeksie pracy, wymiaru czasu pracy przez okres jego aktywności zawodowej nie powinno spowodować ujemnych zmian w jego stanie zdrowia oraz w stanie zdrowia jego przyszłych pokoleń. Podstawowym celem ustalania najwyższych dopuszczalnych stężeń (NDS) substancji szkodliwych dla zdrowia jest obniżenie lub minimalizacja ich stężeń w środowisku pracy do poziomu akceptowalnego ryzyka zdrowotnego. Dla pyłów są ustalone NDS-y przedstawione w rozporządzeniu ministra pracy i polityki socjalnej.

Tryb i częstotliwość wykonywania badań i pomiarów pyłów

Tryb i częstotliwość wykonywania badań i pomiarów czynników szkodliwych dla zdrowia występujących w środowisku pracy reguluje rozporządzenie ministra zdrowia. Pracodawca, w którego zakładzie pracy występują szkodliwe dla zdrowia pyły, jest obowiązany do dokonywania badań i pomiarów stężeń pyłów:

w przypadku pyłów o działaniu rakotwórczym pomiary przeprowadza się:
- co najmniej raz na 3 miesiące przy stwierdzeniu stężeniu pyłu powyżej 0,5 NDS,
- co najmniej raz na 6 miesięcy przy stwierdzeniu stężenia pyłu powyżej 0,1 do 0,5 NDS,
- w każdym przypadku wprowadzenia zmiany w warunkach występowania tego pyłu

w przypadku pyłów, innych niż pyły rakotwórcze, pomiary przeprowadza się:
- co najmniej raz w roku przy stwierdzeniu stężenia pyłu powyżej 0,5 wartości NDS,
- co najmniej raz na dwa lata przy stwierdzeniu stężenia pyłów powyżej 0,1 do 0,5 NDS,
- w każdym przypadku wprowadzenie zmiany w warunkach występowania pyłów.

Pomiary pyłów w środowisku pracy nie przeprowadza się, jeżeli wyniki dwóch ostatnio przeprowadzonych pomiarów nie przekroczyły 0,1 wartości NDS a w procesie technologicznym nie dokonała się zmiana mogąca wpłynąć na stężenie pyłów.

Jeżeli z badań wyniknie, że obliczone wartości wskaźników narażenia na pyły są wyższe od wartości najwyższych dopuszczalnych stężeń NDS-ów. to pracodawca powinien niezwłocznie podjąć działania i środki zmierzające do zlikwidowania przekroczeń.

Ocena ryzyka związanego z narażeniem na pyły
Ocena ryzyka zawodowego związanego z narażenia na pyły jest procesem złożonym i obejmuje:

- identyfikację rodzaju pyłu występującego na stanowisku pracy,
- oznaczenie stężenia pyłu i, tam gdzie to jest wymagane, zawartości wolnej krystalicznej krzemionki w pyle,
- obliczenie wskaźnika narażenia na pyły,
- przeprowadzenie oceny narażenia na pyły,
- oszacowanie ryzyka zawodowego związanego z narażeniem na pyły,
- wyznaczenie dopuszczalności ryzyka.

<table>
<thead>
<tr>
<th>W > NDS</th>
<th>RZYKO DUŻE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDS >= W > 0,5 NDS</td>
<td>RZYKO ŚREDNIE</td>
</tr>
<tr>
<td>W >= 0,5 NDS</td>
<td>RZYKO MAŁE</td>
</tr>
</tbody>
</table>

W - wartość wskaźnika narażenia,
NDS - wartość najwyższego dopuszczalnego stężenia pyłu

Rzyko duże jest rzykiem niedopuszczalnym. Jeżeli ryzyko zawodowe jest związane z pracą już wykonywaną, działania w celu jego zmniejszenia należy podjąć natychmiast (np. przez zastosowanie środków ochronnych). Planowana praca nie może być rozpoczęta do czasu zmniejszenia ryzyka zawodowego do poziomu dopuszczalnego.

Rzyko średnie jest rzykiem dopuszczalnym. Zaleca się zaplanowanie i podjęcie działań, których celem jest zmniejszenie ryzyka zawodowego.

Rzyko małe jest rzykiem dopuszczalnym. Konieczne jest zapewnienie, że ryzyko zawodowe pozostaje co najwyżej na tym samym poziomie.

Zapobieganie skutkom narażenia na pyły

Profilaktyka medyczna

Celem działań profilaktycznych w stosunku do osób narażonych na szkodliwe działanie pyłów jest zapobieganie przede wszystkim przypadkom pylicy krzemowej, pylicy azbestowej oraz zmianom nowotworowym. Pylice płuc w zależności od wielkości narażenia mogą się ujawnić już po 5 latach pracy. Liczba chorych rośnie wraz ze stażem pracy. Średni okres rozwoju pylic płuc wynosi 15 lat, a nowotworów - powyżej 20 lat. W profilaktyce medycznej należy zwrócić szczególną uwagę na badania wstępne i okresowe. Do pracy w środowisku o wysokim zapyleniu nie należy przyjmować osób z wrodzonymi lub nabytymi zmianami układu oddechowego i krążenia.

W przypadku narażenia na azbest istotne jest ograniczenie nawyku palenia papierosów, który wielokrotnie zwiększa ryzyko rozwoju zmian nowotworowych u osób narażonych.

Profilaktyka techniczna - środki ochrony zbiorowej i indywidualnej przed zapyleniem
Rozprzestrzenianie się emitowanych na stanowiskach pracy zanieczyszczeń można ograniczać wykorzystując różne typy środków ochrony zbiorowej przed zapyleniem, których stosowanie, zgodnie z dyrektywami Unii Europejskiej, jest priorytetowe w stosunku do stosowania środków ochrony indywidualnej.

Środki ochrony zbiorowej przed zapyleniem obejmują systemy wentylacji mechanicznej ogólnej oraz instalacje i urządzenia wentylacji mechanicznej miejscowej wyposażone w filtry powietrza. Ogólne przepisy dotyczące wentylacji pomieszczeń w zakładach pracy są określone w Obwieszczeniu Ministra Gospodarki, Pracy i Polityki Społecznej.

Celem wentylacji, polegającej na ciągłej lub okresowej wymianie powietrza w pomieszczeniach, jest:

- poprawa stanu i składu powietrza na stanowiskach pracy zgodnie z wymaganiami higienicznymi (ochrona zdrowia człowieka) i technologicznymi (konieczność uzyskiwania produktów o określonych właściwościach),
- regulacja takich parametrów środowiska powietrznego w pomieszczeniach, jak: stężenie zanieczyszczeń, temperatura, wilgotność oraz prędkość i kierunek ruchu powietrza.

Zarówno w systemach wentylacji ogólnej, jak i w urządzeniach wentylacji miejscowej elementami odpowiedzialnymi za jakość powietrza odprowadzanego lub doprowadzanego do pomieszczeń są systemy oczyszczające (jedno- lub wielostopniowe) wyposażone w odpowiednie filtry powietrza.

Podstawowymi wskaźnikami użytkowymi filtrów powietrza są: skuteczność filtracji i opory przepływu. Skuteczność filtru jest parametrem określającym jego zdolność do oczyszczania powietrza z cząstek zanieczyszczeń o danym składzie wymiarowym. Opory przepływu filtru mają natomiast istotny wpływ na dobór urządzeń wprowadzających powietrze w ruch przy przepływie przez przegrodę filtrującą.

Filtry wstępne (klasy G1-G4) zwykle są stosowane w systemach wentylacji i klimatyzacji pomieszczeń o przeciętnych wymaganiach czystości powietrza (np. hotele, restauracje, domy towarowe, sale koncertowe) i w systemach pomieszczeń o wysokich wymaganiach czystości powietrza jako filtr wstępny przed filtrami o wyższej skuteczności filtracji.

Filtry dokładne (klasy F5-F9) są stosowane jako ostatni stopień filtracji w systemach wentylacji i klimatyzacji pomieszczeń o wysokich wymaganiach czystości powietrza (np. szpitale, kabiny lakiernicze, pomieszczenia czyste klasy ISO 9, ISO 8 i w systemach pomieszczeń o bardzo wysokich wymaganiach czystości powietrza przed filtrami wysoko skutecznymi.

Wysokoskuteczne filtry powietrza typu HEPA (klasy H10-H14) i ULPA (klasy U15-U17) są stosowane jako ostatni stopień filtracji w systemach wentylacji i klimatyzacji pomieszczeń czystych o klasach czystości wyższych niż ISO 7 (np. sterylne sale operacyjne, produkcja leków i surowic, produkcja taśm filmowych i magnetycznych, pomieszczenia produkcji mikroelektroniki, siłownie jądrowe).

W przypadku, gdy zastosowanie środków ochrony zbiorowej przed zapyleniem nie zapewnia wymaganej czystości powietrza w pomieszczeniu pracy należy przeprowadzić dobór środków ochrony indywidualnej, odpowiednich do rodzaju występujących w środowisku pracy pyłów.

Znaczna liczba zatrudnionych w warunkach narażenia na szkodliwe działanie pyłów, obliguje zarówno pracodawców, jak i pracowników do podejmowania wszelkich działań zmierzających do ograniczenia występowania tego zagrożenia w ich zakładach przemysłowych.

Prace zmierzające do likwidacji zagrożenia pyłami powinny obejmować zarówno działania umożliwiające eliminację zagrożenia (stosowanie środków ochrony zbiorowej i indywidualnej), jak i popularyzację wiedzy z zakresu szkodliwości działania pyłów i metod ich eliminacji ze środowiska pracy (szkolenie pracodawców i pracowników).
Eliminacja zanieczyszczeń ze środowiska pracy powinna być realizowana przede wszystkim przez zastosowanie odpowiednich środków ochrony zdrowia przed zapyleniem. Wsze决战 tam, gdzie to jest możliwe, należy dążyć do hermetyzacji procesów produkcyjnych. W pozostałych przypadkach, na podstawie analizy parametrów pobranego u źródła emisji pyłu, należy dobrać odpowiedni system lub urządzenie filtracyjno - wentylacyjne, odpowiednie do rodzaju i stężenia pyłu.

Ostatnim działaniem, jakie powinno być podjęte dla ochrony pracownika przed szkodliwym narażeniem na pyły, jest dobór środków ochrony indywidualnej.

Proces oceny ryzyka zawodowego w przedsiębiorstwie

Szczegółowe zalecenia dotyczące ochrony pracowników przed ryzykiem związanyim z narażeniem na działanie czynników chemicznych w procesie pracy zawiera Rozporządzenie Ministra Zdrowia z dnia 30 grudnia 2004 r. w sprawie bezpieczeństwa i higieny pracy związanej z występowaniem w miejscu pracy czynników chemicznych (Dz.U. nr 11, poz. 86), które wdrożono do prawa polskiego. Rozporządzenie to określa ona podstawowe obowiązki pracodawców, których realizacja umożliwi ograniczenie szkodliwego oddziaływania substancji i preparatów chemicznych na pracowników. Między innymi są to:

- systematyczne dokonywanie oceny ryzyka zawodowego związanego z występowaniem niebezpiecznych substancji i preparatów chemicznych biorąc pod uwagę właściwości czynnika chemicznego stwarzające zagrożenie, dane zawarte w kartach charakterystyk, rodzaj i czas trwania narażenia, rodzaj procesu technologicznego oraz funkcjonujące środki ochrony zbiorowej i stosowane środki ochrony indywidualnej
- eliminowanie lub zmniejszenie do minimum ryzyka

Wytyczne do postępowania przy przeprowadzaniu oceny ryzyka zawodowego na stanowiskach pracy podaje norma PN-N-18002-2000. Ułatwiają one prowadzenie działań na rzecz poprawy warunków pracy oraz ochrony zdrowia i życia pracowników. Pozwalają na wywiązywanie się przez pracodawców z obowiązku dokonywania oceny ryzyka zawodowego.

Zgodnie z procedurą podaną w tej normie, podstawowym kryterium oceny ryzyka są wartości normatywów higienicznych dla środowiska pracy, a więc w przypadku substancji chemicznych - najwyższe dopuszczalne stężenie (NDS), najwyższe dopuszczalne stężenie chwilowe (NDSCh) lub najwyższe dopuszczalne stężenie pulapowe (NDSP).

Ocena ryzyka zawodowego związanego z występowaniem substancji chemicznych w środowisku pracy powinna być wykonywana zgodnie z zaplanowanymi harmonogramami, a jej częstotliwość jest uzależniona od uzyskanych wyników poprzedniej oceny. Należy pamiętać, że nie zależnie od zaplanowanych harmonogramów przeprowadzanie oceny ryzyka jest konieczne po wprowadzeniu zmian na ocenianym stanowisku pracy np. zmian w przebiegu procesu technologicznego lub organizacyjnych, zastosowanie nowych preparatów chemicznych. Również ocena ta powinna być przeprowadzana dodatkowo po zgłoszeniu przez pracowników występowania niekorzystnych zamian w ich stanie zdrowia.

Proces oceny ryzyka zawodowego związanego z narażeniem na substancje chemiczne jest procesem wieloetapowym. Każdy z etapów jest bardzo istotny, a jego wynik ma wpływ na ostateczną ocenę, której podstawowym celem jest ochrona zdrowia i życia pracowników. Z tego względu powinien być przeprowadzany bardzo starannie i z dużą odpowiedzialnością.
Opis stanowiska pracy

Opisując stanowisko pracy, dla którego będzie przeprowadzana ocena narażenia zawodowego należy zbierać informacje dotyczące rodzaju i przebiegu procesu technologicznego, stosowanych substancji lub preparatów chemicznych, chronometrażu pracy poszczególnych pracowników, stosowanych środków ochrony indywidualnej i zbiorowej, a także dotychczasowych wyników pomiarów substancji szkodliwych w środowisku pracy.

Dokumentacje techniczne procesu technologicznego oraz dokumentacje dotyczące bezpieczeństwa i higieny pracy są podstawowym źródłem tych danych, ale równieŜ mogą to być wywiady z pracownikami oraz obserwacja stanowisk pracy.

Identyfikacja

Przed przystąpieniem do wykonywania pomiarów ustala się, jakie substancje chemiczne znajdują się w powietrzu na stanowiskach pracy. Należy dążyć do zidentyfikowania wszystkich substancji, na które jest narażony pracownik.

Przygotowanie listy wszystkich substancji i preparatów chemicznych występujących na ocenianych stanowiskach pracy oraz na stanowiskach sąsiadujących, które mogą być przyczyną występowania szkodliwych efektów w organizmie pracownika, jest podstawowym zadaniem umożliwiającym identyfikację zanieczyszczeń powietrza.

Na wielu stanowiskach pracy wytypowanie czynników stwarzających zagroŜenie dla zdrowia zatrudnionych osób nie jest łatwe, szczególnie, gdy mamy do czynienia ze skomplikowanymi procesami technologicznymi oraz gdy skład stosowanych surowców jest chroniony przez producentów. W takich...
przypadkach należy przeprowadzić szczegółowe badania identyfikacyjne, które wykonują przy zastosowaniu odpowiednich technik analitycznych wyspecjalizowane laboratoria badawcze.

Pamiętaj! Pod wpływem ogrzewania preparatów lub substancji chemicznych zawierających chlor powstaje bardzo toksyczny gaz - fosgen

Oznaczanie substancji szkodliwych w powietrzu na stanowiskach pracy

Zgodnie z zaleceniami rozporządzenia Ministra Zdrowia z dnia 20 kwietnia 2005 r. (Dz.U. nr 73, poz. 645) pomiary stężeń substancji szkodliwych w powietrzu stanowisk pracy powinny być wykonywane przez laboratoria:

- Państwowej Inspekcji Sanitarnej
- jednostek naukowo-badawczych w dziedzinie medycyny pracy i CIOP-PIB
- akredytowane zgodnie z przepisami o badaniach i certyfikacji
- upoważnione przez państwowego wojewódzkiego inspektora sanitarnego.

a od 2007 r. wylecznie przez laboratoria akredytowane.

Zasady pobierania próbek powietrza oraz interpretacja wyników pomiarów powinny być zgodne z zasadami podanymi w normie PN-Z-04008-7:2002.

Ocena narażenia zawodowego

Na podstawie uzyskanych wyników pomiarów stężeń substancji szkodliwych w pobranych próbkach powietrza oblicza się wskaźniki narażenia, a następnie ustala ich relację do wartości NDS, NDSCh lub NDSP.
Najwyższe Dopuszczalne Stężenia – NDS są podstawa oceny narażenia i ryzyka zawodowego

Warunki pracy należy uznać za bezpieczne, jeżeli obliczone wartości wskaźników narażenia nie przekraczają wartości NDS. Natomiast, gdy wartości te są wyższe od wartości NDS, to warunki pracy są szkodliwe.

Częstotliwość wykonywania pomiarów stężeń substancji szkodliwych w powietrzu na stanowiskach pracy zależy od poziomów stężeń i jest podana w rozporządzeniu Ministra Zdrowia z dnia 20 kwietnia 2005 r. Dz. U. nr 73, poz. 645.

Częstotliwość wykonywania pomiarów stężeń substancji szkodliwych w powietrzu na stanowiskach pracy zależy od poziomów stężeń (ROZPORZĄDZENIE MINISTRA ZDROWIA Z DNIA 20 KWIETNIA 2005 R. W SPRAWIE BADAŃ I POMIARÓW CZYNNIKÓW SZKODLIWYCH DLA ZDROWIA W ŚRODOWISKU PRACY. DZ. U. NR 73, POZ. 645)). W razie stwierdzenia przekroczeń najwyższych dopuszczalnych stężeń substancji szkodliwej dla zdrowia należy określić przyczyny i niezwłocznie wprowadza środki techniczne, technologiczne lub organizacyjne.

Natomiast przy stwierdzeniu, w ostatnio przeprowadzonym badaniu od 0,1 do 0,5 włącznie wartości najwyższych dopuszczalnych stężeń wartości pomiary wykonuje się, co najmniej raz na dwa lata, a przy stwierdzeniu od powyżej 0,5 do 1,0 włącznie wartości najwyższych dopuszczalnych stężeń - co najmniej raz w roku.

W przypadku występowania w środowisku pracy substancji chemicznej o działaniu rakotwórczym lub mutagennym, zgodnie z wykazem określonym w rozporządzeniu ministra zdrowia pomiary stężeń tych czynników należy wykonywać w każdym przypadku wprowadzenia zmian w warunkach stosowania tego czynnika oraz:

- co najmniej raz na trzy miesiące – przy stwierdzeniu stężeń czynnika rakotwórczego lub mutagennego od powyżej 0,5 do 1,0 włącznie wartości najwyższych dopuszczalnych stężeń
- co najmniej raz na sześć miesięcy – przy stwierdzeniu w dwóch poprzednich pomiarach stężeń czynnika rakotwórczego lub mutagennego od 0,1 do 0,5 włącznie wartości najwyższych dopuszczalnych stężeń.

Okresowe pomiary substancji chemicznych nie są wymagane, jeżeli wyniki ostatnio przeprowadzonych pomiarów nie przekraczają 0,1 wartości najwyższych dopuszczalnych stężeń, a w procesie technologicznym nie były wprowadzane zmiany, mogące wpływać na wysokość stężeń. Dotyczy to również pomiarów czynników rakotwórczych lub mutagennych.

Do określenia częstotliwości badań czynników chemicznych na podstawie wysokości ich stężeń należy stosować, w zależności od sposobu pobierania próbek powietrza następujące wskaźniki narażenia: w dozimetrii indywidualnej - średnią ważoną dla całej zmiany roboczej (Cw); w pomiarach stacjonarnych – odpowiednio, średnie geometryczne (Xg) (proces jednorodny) lub średnie ważone średnich.
geometrycznych (X_gw) (proces składający się z kilku etapów).

Ocena ryzyka zawodowego

Wyniki oceny narażenia są podstawą szacowania ryzyka zawodowego związanego z obecnością szkodliwych substancji chemicznych w środowisku pracy.

Wyróżniamy trzy poziomy ryzyka zawodowego związanego z narażeniem na szkodliwe substancje chemiczne:

- **ryzyko małe (M)** jeżeli wyznaczone wskaźniki narażenia przy ocenie zgodności warunków pracy z wartościami NDS oraz dodatkowo NDSCh lub NDSP są mniejsze niż 0,5 tych wartości
- **ryzyko średni (S)** jeżeli wyznaczone wskaźniki narażenia są równe lub większe od 0,5 wartości dopuszczalnych NDS, NDSCh lub NDSP, ale nie przekraczają tych wartości
- **ryzyko duże (D)** jeżeli wskaźniki narażenia są większe od wartości dopuszczalnych NDS, NDSCh lub NDSP.

Przyjęta zasada oceny ryzyka zawodowego nie dotyczy substancji o działaniu rakotwórczym mutagennym. W przypadku występowania tych substancji w środowisku pracy ryzyko dla wszystkich pracowników jest zawsze duże, jeżeli wartości wyznaczonych wskaźników narażenia są większe lub równe 0,1 NDS. Gdy wskaźniki narażenia są mniejsze od 0,1 NDS to ryzyko można ocenić jako ryzyko średnie.

Ze względu na odrębne przepisy regulujące prace młodocianych oraz kobiet, ocena ryzyka dla tych grup pracowników równieŜ odbiega w niektórych przypadkach od przyjętej zasady. Dotyczy to prac wykonywanych przez młodocianych oraz kobiet w ciąŜy i w okresie karmienia zatrudnionych w warunkach narażenia na substancje chemiczne wymienione w wykazach prac wzbronionych tym grupom pracowników. Ryzyko zawodowe w tych przypadkach należy oszacować jako duże.

W odniesieniu do czynników chemicznych nie mających ustalonych wartości normatywnych w przepisach krajowych, pracodawca może ustalać własne kryteria dopuszczalności ryzyka zawodowego z uwzględnieniem opinii ekspertów z dziedziny BHP, własnych doświadczeń oraz doświadczeń i opinii pracowników. Niestety, jest bardzo skomplikowane i trudne do realizacji zadanie. Dlatego dobrą propozycją jest zapoznanie się z zasadami uproszczonej, jakościowej oceny ryzyka zawodowego [Pośniak M.: Ocena ryzyka zawodowego – narażenie na czynniki chemiczne]. Przy dokonywaniu tej oceny są uwzględniane trzy zmienne:

- podstawowe zagroŜenie daną substancją chemiczną (wyznaczone na podstawie zwrotów R),
- łatwe przedostawanie się substancji do środowiska (lotność/skłonność do tworzenia pyłów),
- ilość substancji użyta w ocenianej operacji.

W zaleŜności od tych zmiennych wyznacza się przewidywany poziom ryzyka zawodowego, stosując określone zasady. Innym prostszym rozwiązaniem, które można wykorzystać do zidentyfikowania zagroŜeń i oceny ryzyka zawodowego, są listy kontrolne.

Działania korygujące

Uzyskane wyniki oceny ryzyka zawodowego stanowią postawę do planowania przez pracodawcę działań korygujących i zapobiegawczych na stanowisku pracy.

W przypadku stwierdzenia ryzyka dużego pracodawcy muszą podejmować natychmiastowe działania, których zadaniem jest doprowadzenie do zmniejszenia stęŜeń szkodliwych substancji chemicznych w powietrzu na stanowiskach pracy do stęŜeń bezpiecznych tj. poniŜej najwyższych dopuszczalnych wartości. Do czasu zmniejszenia ryzyka zawodowego do poziomu średniego przez zastosowanie odpowiednich środków technicznych czy organizacyjnych, pracownicy powinni stosować właściwie
dobrane środki ochrony indywidualnej.
W przypadku, gdy ryzyko na badanym stanowisku pracy jest średnie, również należy podjąć odpowiednie działania w celu zredukowania ryzyka do małego, po uwzględnieniu kosztów ewentualnych modernizacji.

Podsumowanie

Nie ulega wątpliwości, że właściwe dokonana ocena ryzyka zawodowego związanego z narażeniem pracowników na substancje chemiczne jest procesem pracochłonnym i kosztownym. Wymaga szybkiego dostępu do informacji oraz właściwego ich przetworzenia. Z tego względu pracodawcy oraz pracownicy zarządzający bezpieczeństwem i higieną pracy w celu ułatwienia realizacji zadań mogą korzystać z narzędzi komputerowego wspomagania posiadających systemy rejestrowania zagrożeń, wypadków oraz oceny ryzyka zawodowego.
Stosowanie zaleceń przepisów prawa i norm w zakresie bezpieczeństwa i higieny pracy umożliwia pracodawcom podejmowanie działań ograniczających lub eliminujących zagrożenia chemiczne w środowisku pracy.